TECHNICAL DOCUMENTATION FOR A RESIDENTIAL ENERGY USE DATA BASE DEVELOPED IN SUPPORT OF ASHRAE SPECIAL PROJECT 53 Y.J. Huang R. Ritschard J. Bull Energy Analysis Program Applied Science Division Lawrence Berkeley Laboratory University of California Berkeley, California 94720 November 10, 1987 This work was supported by the Assistant Secretary for Conservation and Renewable Energy, Office of Building and Community Systems, Building Systems Division of the U. S. Department of Energy under contract DE-AC06-76RLO-1830. #### SUMMARY Starting in 1986, Pacific Northwest Laboratory (PNL) has been working with ASHRAE Special Project 53 to conduct research in support of a residential energy conservation standard. The Energy Analysis Program at Lawrence Berkeley Laboratory (LBL) has been contracted by PNL to develop a new residential energy use data base in support of this effort. The simulation methodology improves upon that used earlier by LBL in producing the voluntary energy guidelines data base. Significant enhancements were made in the modeling of underground heat flow, window operations and glazing types, and cooling loads. Since the proposed standards will be in a computerized format, the final data base was tailored to utilize the capabilities of a micro-computer program. The residential energy use data base was developed using the DOE-2.1C building energy simulation program and covers three building prototypes (one-story, town-house, and apartment), three foundation conditions (slab-on-grade, basement, and vented crawl space) in 45 U.S. locations. For each building prototype and location, a range of insulation, infiltration, and window conditions were considered. The calculated annual heating and cooling loads were analyzed and reduced to regression coefficients giving the contribution to building load of each component, i.e., ceiling, walls, infiltration, as a function of its thermal and physical characteristics. The primary format of the data base is a computer file of regression coefficients coded by prototype, location, building component, and separated by heating or cooling. The same information is also available in printed form on tables that also show the incremental changes in heating and cooling loads for typical conservation measures. The data base serves as the building loads calculation portion of the computer program being developed by PNL as a residential conservation standard. # **CONTENTS** | SUMMARY | ii | |---|-----| | INTRODUCTION | 1 | | 1. BUILDING ENERGY ANALYSIS | 2 | | 1.A Basic Simulation Method | 2 | | 1.A.1 Response Factors | 2 | | 1.A.2 Below-grade Modeling | 3 | | 1.B Building Prototypes | 10 | | 1.C Building Envelope | 12 | | 1.C.1 Insulation | 12 | | 1.C.2 Infiltration | 15 | | 1.C.3 Window Characteristics | 16 | | 1.D Building Operating Conditions | 17 | | 1.E Building Locations | 20 | | 2. ANALYSIS OF HEATING AND COOLING LOADS | 22 | | 2.A Component Loads | 22 | | 2.B Ceilings and Walls | 23 | | 2.C Foundation insulation measures | 29 | | 2.D Infiltration | 32 | | 2.E Windows | 41 | | 3. RESULTS | 55 | | 3.A Tables for Insulation and Infiltration Measures | 55 | | 3.B Tables for Mass Walls and Solar Gain Measures | 192 | | 4. REFERENCES | 238 | | APPENDIX A Master DOE-2 Input File | 240 | | APPENDIX B Sample Processed DOE-2 Input File | 254 | # **FIGURES** | 1.1 WALFERF Input for R-11 Wood-frame Wall | 4 | |---|----| | 1.2 WALFERF Input for 8-inch Log Wall | 5 | | 1.3 WALFERF Input for R-10 Concrete-block Wall | 6 | | 1.4 WALFERF Input for R-19 Ceiling Assembly | 7 | | 1.5 WALFERF Input for R-11 Floor Assembly | 8 | | 1.6 Foundation Cross-section Modeled in the USCUG Program | 9 | | 1.7 Average Hourly Fluxes for Basement Foundations | | | in Denver Calculated by the USCUG Program | 9 | | 1.8 Regression Analysis of Steady-State U-values for | | | Basement Foundations in Denver | 11 | | 1.9 Internal Load Profile | 18 | | 2.1 - 2.2 Correlations of Δ Ceiling Loads to U-values | 25 | | 2.3 - 2.4 Correlations of Δ Wall Loads to U-values | 27 | | 2.5 - 2.8 Correlations of Δ Loads to U-values for Mass Walls | 30 | | 2.9 - 2.16 Correlations of Δ Foundation Loads to U-values | 33 | | 2.17 - 2.18 Correlations of Δ Infiltration Loads to | | | Effective-leakage-fractions | 42 | | 2.19 Correlation of Average Winter Air-change Rates to | | | Effective-leakage-fractions | 44 | | 2.20 - 2.21 Correlations of Δ Window Conduction Loads to U-values | 45 | | 2.22 (dLoad/dSolar Aperture) as a Function of Total | | | Solar Aperture in Albuquerque | 51 | | 2.23 Multi-linear Correlation of Δ Cooling Loads to | | | Solar Aperture in Phoenix | 52 | | 2.24 Correlation of Δ Cooling Loads to | | | Solar Aperture*Solar Usability in Phoenix | 52 | | 2.25 Multi-linear Correlation of Δ Heating Loads to | | | Solar Aperture in Albuquerque | 53 | | 2.26 Correlation of Δ Heating Loads to | | | (Solar Aperture*Solar Usability) in Albuquerque | 53 | # **TABLES** | 1.1 Prototype Building Dimensions | 12 | |--|------| | 1.2 Steady-state U-values for Building Components | | | calculated by the WALFERF Program | 14 | | 1.3 Foundation Insulation Levels | 15 | | 1.4 Window U-values | . 17 | | 1.5 Shading Coefficients for Typical Glazing Products | 19 | | 1.6 Internal Loads Schedule | 18 | | 1.7 Building Locations | 21 | | 2.1 Parametric Analysis of Insulation Measures | 24 | | 2.2 Parametric Analysis of Window Conditions | 47 | | 2.3 Window Regression Analysis for Albuquerque Heating Loads | 49 | | 2.4 Window Regression Analysis for Phoenix Cooling Loads | 50 | #### INTRODUCTION Over the past decade, the Energy Analysis Program at Lawrence Berkeley Laboratory has conducted extensive computer analysis of the impact of various conservation measures on energy use in residential buildings in different U. S. locations. From 1982 to 1986, LBL was involved in the voluntary residential standards project funded by Department of Energy, and compiled a large data base of residential energy use from parametric simulations using the DOE-2.1A and DOE-2.1B energy simulation programs. The methodology used to build that data base have been extensively reviewed and documented in a technical support document (Huang et al. 1987). The final version of the data base is an interactive computer program called PEAR (Program for Energy Analysis of Residences; Energy Analysis Program 1987). The same data base is also used in the proposed energy conservation standards for new federal residential buildings, and the 1987 draft of ASHRAE-90.2 Standard. The data base effort described in this report was done by LBL on contract to Pacific Northwest Laboratory for the ASHRAE Special Project 53, "Research in Support of a Residential Energy Conservation Standard". After reviewing the earlier voluntary energy guidelines work, the SP53 committee recommended that the data base be expanded to include additional conservation measures and upgraded with improved analysis of foundation and cooling loads. After discussions between the committee, PNL, and LBL, the decision was reached to create a new data base. This decision would insure compatibility throughout the data base, and utilize improved simulation techniques, more realistic operating assumptions, and better weather data developed over the past six years. Although repeating the DOE-2 simulations required a substantial amount of computer time, the staff effort was reduced since the methodology and analysis techniques had been developed already in the course of the voluntary energy guidelines work. Whenever this data base work utilizes the same assumptions and analysis techniques as the earlier work, these will be briefly summarized in this report, and references made to the technical documentation for the earlier work for further details. This applies to the prototype building descriptions, the selection of base cities, internal loads, and construction details. This report will focus more on those areas where substantial improvements have been made in simulation techniques or in the analysis of results. The major areas include (1) use of a two-dimensional finite-difference program to calculate heat fluxes through the building-ground interface, (2) use of non-linear multi-variant regression analysis to correlate window loads, and (3) reduction of building loads data into regression coefficients. ## **BUILDING ENERGY ANALYSIS** # **Basic Simulation Method** The data base simulations were done using a developmental version of the DOE-2.1C program (for a description of DOE-2, refer to Lawrence Berkeley Laboratory 1980). In addition, two smaller programs were used to generate inputs to DOE-2.1C for response factors and underground heat fluxes. Compared to earlier versions of DOE-2, DOE-2.1C has improved modeling of solar gain, internal walls, residential infiltration, better custom weighting factor calculations, and new system performance curves that more accurately model part load effects in residential air-conditioners. DOE-2.1C also has the flexibility of permitting user-input functional values in the LOADS portion of the simulations. This feature was used in the data base work to define the summer window shading schedule based on cooling degree days, and to input heat fluxes calculated by a two-dimensional finite difference model in place of the standard DOE-2 calculations for underground surfaces. The developmental 2.1C version used to generate the data base has the following enhancements to the Residential SYSTEMS portion of the program: (1) the natural ventilation rate is calculated as a function of exterior wind speed and temperature rather than a fixed input value, and (2) the natural ventilation controls are held fixed between midnight and 7 a.m., i.e., it is assumed that occupants will
not operate the windows after going to bed. These modifications give more realistic modeling of typical window operations in residences and will be included in future public releases of DOE-2.1. Two additional programs, WALFERF and a finite-difference program for underground heat flow developed by the Underground Space Center at the University of Minnesota (here referred to as the USCUG model), were used to improve the modeling capabilities of DOE-2.1C. # Response Factors WALFERF is a finite-element program developed at LBL to calculate wall response factors for two-dimensional heat conduction. The program is based on a DOE-2 subroutine originally written to model earth contact surfaces (Bull et al. 1981) and uses a technique developed by Ceylan and Myers (Ceylan et al. 1979). In addition to the standard input for thermal properties, thicknesses, and sequence of materials making up each block, WALFERF also requires the number of blocks and their widths. Figure 1.1 shows a sample input file and schematic representation of a R-11 wood-frame wall modeled as two blocks, a stud portion 0.75 inch wide and a non-stud portion 2.25 inches wide. Figures 1.2 through 1.5 show similar input files for typical log wall, concrete wall, ceiling, and floor assemblies. The output from WALFERF are two-dimensional response factors that can be written into the standard DOE-2 response factor library format. For a wall composed of a single block, WALFERF produces the same response factors as the DOE-2 BDL program. Future release versions of DOE-2 program will include WALFERF as a utility program. For the residential data base, WALFERF was used to generate the response factor library for the delayed walls. This method accounts for two-dimensional heat flow in mixed walls and obviates the need to model separately the stud and non-stud portions of walls. ### Below-grade Modeling Since the existing DOE-2 program does not adequately model the building-to-ground interface, LBL has worked with the Underground Space Center (USC) at the University of Minnesota to incorporate into DOE-2.1C results from a below-grade heat transfer simulation program developed at the USC. The USCUG model is a two-dimensional fully-implicit integrated finite difference heat conduction program (Underground Space Center 1983). It was used to simulate on a daily time step the dynamic behavior of a representative one-foot vertical cross-section of the foundation and surrounding soil extending 50 feet down and 30 feet out from the building (Figure 1.6). The boundary conditions, i.e., the assumed indoor, outdoor and deep ground temperatures, were kept identical as those used for the DOE-2 simulations. Deep ground temperatures were based on existing data on well temperatures (Labs 1981), indoor temperatures set to the zone temperature in the DOE-2.1C LOADS calculation, and the average outdoor daily air temperatures calculated from the DOE-2 weather tapes. A three-year initialization period was necessary for the representative section to stabilize. The USCUG simulations yield daily fluxes at each node of the finite difference grid for the representative section. These fluxes were then integrated over the "foot-print" of the prototype foundation to produce a file of average hourly fluxes through the underground surfaces of the prototype buildings for each day of the year (Figure 1.7). During the DOE-2.1C simulation, these fluxes are read as a function in LOADS, supplanting the standard DOE-2 underground flux calculation. Although the DOE-2 program was not used for calculating underground heat conduction, it was still necessary to model the underground layers as delayed walls to calculate response factors. These Figure 1.1 WALFERF Input for R-11 Wood-frame Wall | r11rwall 0 0
17
0.0925
0.0263
0.0342
0.0168
0.9217
0.9901 | 0.26
0.20
0.31
0.29
0.24
0.24 | 50.0
1.15
22.0
1.0
.075
.075 | 3.
4.
6.
9.
16.
17. | (file name) | |--|--|---|------------------------------------|---| | 4
1
9
1
6
2
4
2
1
3 | 3.0
0.12
3.0
0.5
3.0
3.5
2.25
0.75
0.5
3.0
0.680 | No. of laye
L-1
L-2
L-3
L-4 | ors . | (no. of layers and total width) (no. of blocks and thickness for L-1) (material and width) (no. of blocks and thickness for L-2) (material and width) (no. of blocks and thickness for L-3) (material and width) (material and width) (no. of blocks and thickness for L-4) (material and width) (ino. of blocks and thickness for L-4) (material and width) (inside film resistance) | Figure 1.2 WALFERF Input for 8 inch Log Wall | 8log 0 0 1
12
.5
.5
.0669
.0925
.0263
.4167 | .22
.22
.29
.26
.20 | 70.0
140.0
34.0
50.0
1.15
116.0 | 1.
2.
3.
4.
5. | mason1
mason2
wood
drywall
insulation
stucco | (file name) (number of material descriptions) (conductance, specific heat, and density of materials) | |--|---------------------------------|--|----------------------------|---|--| | 1
1
3 | 2.00
8.00
2.00
.680 | No. of laye
L-1 | rs | (no. of bloc
(material a | rs and total width)
ks and thickness for L-1)
nd width)
resistance) | Layer 1 8.00" Blk 1 R 9.9651 wood I F R = 0.6800 Figure 1.3 WALFERF Input for R-10 Concrete-block Wall | r10cb95 0 0
12
.5
.5
.0925
.0263
.4167
.5
.5
.2
.5 | .22
.22
.26
.20
.22
.22
.22
.30
.30 | 70.0 1. 140.0 2. 50.0 4. 1.15 5. 116.0 6. 70.0 7. 140.0 8. 5.0 9. 5.0 100750 12. | mason1 mason2 drywall insulation stucco concblock1 concblock2 perlite1 perlite2 4.88" block o | (file name) (number of material descriptions) (conductance, specific heat, and density of materials) | |--|--|--|---|--| | 5
1
6
1
5
1
7
2
7
12
1 | 3.06
0.50
3.06
3.16
3.06
1.38
3.06
4.88
0.63
2.43
1.38
3.06
.680 | No. of layers
L-1
L-2
L-3
L-4 | (no. of blocks) (material and (material and | s and thickness for L-2) I width) s and thickness for L-3) I width) s and thickness for L-4) I width) I width) s and thickness for L-5) I width) s and thickness for L-5) I width) | | | | Layer 1 0.50" Blk 1 R 0.100 Layer 2 3.16" Blk 1 R10.012 Layer 3 1.38" Blk 1 R 0.230 Layer 4 4.88" Blk 1 R 0.813 Blk 2 R 1.010 Layer 5 1.38" Blk 1 R 0.2300 I F R = 0.6800 | O stucco 7 insulati O concbloc 3 concbloc 1 4.88" bl | :k3
:k3
ock gap | | | | 0.4167 4.88" bl 0.4026 insulati 0.0263 concbloc | 0.240
on
0.200 | 0.07 | Figure 1.4 WALFERF Input for R-19 Ceiling Assembly | r19roof 0 0 1 18 .0669 .29 34.0 2. wood (conductance, specificance) .6873 .24 .075 .11. attic .0249 .1897 .15 .15 .1308775 .275 50.0 140633 .275 27.0 15. woods .42245 .24 .075 16. airlayh .50" 1.0023 .24 .075 18. roofgap | ic heat, | |---|----------| | 7 9.75 No. of layers (no. of layers and total width) | | | 1 .25 L-1 (no. of blocks and thickness for L- | .1\ | | 8 9.75 (material and width) | •, | | 1 .50 L-2 (no. of blocks and thickness for L-
2 9.75 (material and width)
2 5.50 L-3 (no. of blocks and thickness for L- | ·2) | | 2 9.75 (material and width) | , | | 2 5.50 L-3 (no. of blocks and thickness for L- | 3) | | 18 9.00 (material and width) | • | | 2 .75 (material and width) | | | 2 12.00 L-4 (no. of blocks and thickness for L- | 4) | | 18 9.00 (material and width) | • | | 11 .75 (material and width) | | | 2 .50 L-5 (no. of blocks and thickness for L- | 5) | | 13 9.00 (material and width) | • | | 18 .75 (material and width) | | | 2 5.50 L-6 (no. of blocks and thickness for L- | 6) | | 13 9.00 (material and width) | | | 15 .75 (material and width) | | | 1 .50 L-7 (no. of blocks and thickness for L- | 7) | | 14 9.75 (material and width) | | | .765 (inside film resistance) | | | ٠ | | | | • | | | | • | • | • | | | - | - | Λ | |-----|---------|----|-------|--------|--------|----------|------|-------------|----|-------------|--------|----|--------|---------------|-----------| | ĺ | Ξ | Ξ | I | Ĭ | Ι | Ξ | Ī | Ī | Ţ | - | - | - | - | | ١.,١ | | • | * | • | • | ٠ | ٠ | ٠ | • | * | • | • | • | • | • | ٠ | ٧.\ | | ٠ | ٠ | + | ٠ | • | ٠ | + | * | + | ٠ | ٠ | ٠ | ٠ | ٠ | + | V١ | | + | + | ٠ | ٠ | ٠
| ٠ | ٠ | + | ٠ | + | + | ٠ | ٠ | + | + | M | | + | ٠ | ٠ | ٠ | ٠ | + | + | ٠ | + | ٠ | + | + | ٠ | ٠ | ٠ | [/\ | | ٠ | ٠ | + | + | + | + | + | + | ٠ | + | + | • | ٠ | + | ٠ | 1. | | | | ٠ | | | Ĺ | i | i | Ĺ | Ĺ | | i | Ė | i | _ | LA. | | | Ĺ | Ĺ | Ĺ | Ĺ | í | í | Ī | Ĭ | í | ī | Í | Ī | Ĭ | Ĭ. | ۱,۰ | | | Ţ | - | 7 | | | • | - | 7 | 7 | 7 | - | - | - | | ۱.۱ | | • | • | • | • | • | * | * | ٠ | ٠ | ٠ | ٠ | ٠ | ٠ | • | * | ۲.۱ | | • | + | + | + | ٠ | * | ٠ | + | * | + | + | + | ٠ | + | ٠ | M | | • | • | • | • | _ | - | - | - | • | - | - | • | • | - | - | ۳ | | + | ٠ | ٠ | + | ٠ | + | ٠ | + | + | ٠ | ٠ | ٠ | + | + | + | ١. | | ٠ | ٠ | + | + | + | + | + | + | ٠ | ٠ | ٠ | ٠ | ٠ | ٠ | | ١. | | ٠ | ٠ | + | + | + | + | + | + | ٠ | ٠ | + | + | + | ٠ | | | | + | | + | + | ٠ | + | + | + | ٠ | ٠ | + | + | + | + | | | | | | ٠ | ٠ | | | ÷ | i | | | | | ÷ | | | • | | | Ī | Ĭ | Ĭ | Ξ | - | Ξ | - | Ξ | Ξ | | Ξ | Ξ | ÷ | - | •. | | 7 | • | | • | Ĭ | | • | • | • | • | • | • | • | • | • | ٠ | | * | • | • | • | * | * | * | ٠ | ٠ | • | * | * | * | • | + | • | | • | • | ٠ | + | * | + | + | + | ٠ | ٠ | ٠ | + | + | + | + | | | ٠ | + | + | ٠ | + | + | + | ٠ | + | + | + | + | ٠ | + | + | | | ٠ | ٠ | ٠ | ٠ | ٠ | + | + | ٠ | ٠ | + | ٠ | ٠ | ٠ | ٠ | + | | | • | ٠ | ٠ | ٠ | + | + | + | + | ٠ | ٠ | ٠ | ٠ | + | + | + | | | ٠ | ٠ | + | + | + | ٠ | + | ٠ | + | ٠ | ٠ | ٠ | + | ٠ | • | | | ٠ | ٠ | • | + | | + | | ٠ | ٠ | ٠ | + | + | ٠ | + | ٠ | | | | ÷ | ٠ | ٠ | i | ٠ | i | | | | | | | ٠ | | • | | | • | | Ī | | Ĭ | Ī | Ĭ | Ī | Ī | Ī | Ī | Ī | | | • | | • | : | | | | 7 | • | | 7 | 7 | | 7 | 7 | Ţ | | ٠. | | • | • | • | • | • | • | * | • | * | • | * | • | • | • | • | ٠ | | • | * | ٠ | • | • | + | ٠ | + | ٠ | + | + | + | ٠ | + | • | ٠ | | • | • | • | * | ٠ | • | ٠ | + | * | + | + | + | + | • | ٠ | ٠ | | ٠ | ٠ | ٠ | + | + | ٠ | ٠ | ٠ | ٠ | ٠ | ٠ | + | ٠ | ٠ | ٠ | | | | ٠ | ٠ | + | ٠ | + | ٠ | ٠ | ٠ | ٠ | ٠ | ٠ | + | ٠ | ٠ | | | ٠ | ٠ | ٠ | ٠ | ٠ | ٠ | ٠ | + | ٠ | ٠ | ٠ | ٠ | ٠ | + | ٠ | | | ٠ | ٠ | ٠ | ٠ | ٠. | ٠ | ٠ | ٠ | ٠ | ٠ | ٠ | + | ٠ | ٠ | ٠ | ١. | | ٠ | ٠ | ٠ | + | ٠ | + | ٠ | + | + | + | + | ٠ | + | ٠ | + | ľ | | _ | | | | | | | | | | | | | | | Ŀ | | - | 2 | - | | \leq | \leq | \leq | | \subseteq | | \subseteq | | | \leq | | | | , | 1 | 1 | 7 | 7 | 7 | 7 | 7 | 7 | 7 | 7 | 77 | ~ | 7 | Z_{λ} | | | _ | /, | ۸, | // | /, | // | ٠, | 1, | // | ٠, | /, | 1 | ٨, | ٨, | | [:> | | ٠. | ٨. | ۸, | // | // | ٨, | /, | /, | /, | /, | ď, | ٠, | Λ, | Α, | | | | ۲. | Λ, | 1. | 1 | 1 | / | / | Æ. | / | 1 | /. | marin. | 1 | , | | ۲. | | 1 | / | /. | / | / | ~ | / | Λ. | / | /. | /. | / | 1 | _ | / | ۴. | | 1 | / | / | / | / | / | / | Arr. | / | / | 1 | , e | _ | _ | 1 | | | ^ | ,,,,,,, | / | / | / | / | | / | _ | / | / | | _ | | 1 | | | m | / | / | | | ,,,, | / | 1 | / | / | 1 | _ | | 1 | 1 | : " | | ,, | / | _ | / | / | , A.V. | 1 | _ | / | _ | / | 1 | _ | _ | | 2 | | _ | 1 | '/ | , and | | _ | 1 | 1 | 1 | | · / | • | ٠, | ٠, | | | | _ | 1 | 1 | ٠, | 1 | • | <u>_</u> | • | // | • | 1 | ٠, | 1 | ٠, | 1 | | | ,,, | // | ٠, | 1 | // | ٠, | // | م. م | ٠, | 6 | ٠,, | ٠, | ٠, | 1 | | | | • | - | _ | - | - | _ | ~ | _ | ~ | _ | - | ~ | - | ~ | ~ | _ | | Layer 1 0.25" | | | | | | |----------------|----------|---------------------------------|----------|-------|-------| | Blk 1 R 0.4414 | shingle | | wood | | | | Layer 2 0.50" | _ | $\triangle \triangle \triangle$ | 0.0669 | 0.290 | 34.00 | | Blk 1 R 0.6228 | wood | [] | attic | | | | Layer 3 5.50" | | لنننا | 0.6873 | 0.240 | 0.07 | | Blk 1 R 0.4573 | roofgap | | | | | | Blk 2 R 6.8510 | wood | <i>Y////</i> | drywalls | | | | Layer 4 12.00" | | | 0.0877 | 0.275 | 50.00 | | • | | | | | | | Blk 1 R 0.9977 | rootgap | | roofgap | | | | Blk 2 R 1.4550 | attic | | 1.0023 | 0.240 | 0.07 | | Layer 5 0.50" | | | | | | | Blk 1 R 1.6734 | insuls | | shingle | | | | B1k 2 R 0.0416 | roofgap | | 0.0472 | 0.300 | 1.00 | | Layer 6 5.50" | | [222] | insuls | | | | Blk 1 R18.4070 | incule | | | | | | | | | 0.0249 | 0.190 | 1.15 | | B1k 2 R 7.2407 | woods | | | | | | Layer 7 0.50" | | ESS | woods | | | | Blk 1 R 0.4748 | drywalls | | 0.0633 | 0.275 | 27.00 | | I F R = 0.7650 | | | | | | Figure 1.5 WALFERF Input for R-11 Floor Assembly | r11fir 0 0 1
18
.0669
.0263
5. | .29
.20
.24
.34 | 34.0
1.15
.075
2.0 | 2.
4.
16.
18. | wood
insulation
airlayh 6.00"
rugnpad | (file name) (number of material descriptions) (conductance, specific heat, and density of materials) | |--|--------------------------|-----------------------------|------------------------|--|--| | 4 | 7.00 | No. of laye | ers | (no. of layers a | and total width) | | 2 | 6.00 | L-1 | | (no. of blocks | and thickness for L-1) | | 16 | 6.25 | | | (material and | width | | 2 | .75 | | | (material and | | | 2 | 3.50 | L-2 | | | | | 4 | 6.25 | L-2 | | (110. OI DIOCKS | and thickness for L-2) | | 2 | .75 | | | (material and v | width) | | 4 | | | | (material and v | | | 1 | .75 | L-3 | | (no. of blocks | and thickness for L-3) | | 2 | 7.00 | | | (material and v | width) | | 1 | .50 | L-4 | | (no. of blocks | and thickness for L-4) | | 18 | 7.00 | | | (material and v | width) | | | .760 | | | (inside film res | istance) | Layer 1 6.00" Blk 1 R 0.1000 airlayh 6.00" Blk 2 R 7.4738 wood Layer 2 3.50" Blk. 1 R11.0900 insulation Blk 2 R 4.3597 wood Layer 3 0.75" Blk 1 R 0.9342 wood Layer 4 0.50" Blk 1 R 2.0833 rugnpad I F R = 0.7600insulation 0.0263 0.200 1.15 rugnpad 0.0200 0.340 2.00 0.0669 0.290 34.00 0.240 0.07 Figure 1.6 Foundation Cross—Section Modeled in the USCUG Finite Difference Program Figure 1.7 Average Hourly Fluxes for Basement Foundations in Denver CO Calculated by the USCUG Program are used in DOE-2 to generate correct zone weighting factors for either the living space (in the case of the slab-on-grade), basement, or crawl-space. For the data base work, we have modeled the underground layers with the maximum amount of thermal mass allowable in DOE-2 to produce suitably "heavy" weighting factors for the zones. Since the USCUG fluxes are calculated at an assumed constant indoor temperature corresponding to the DOE-2 LOADS temperature, it was also necessary to calculate "U-effectives" for the underground surfaces which would be used in DOE-2 SYSTEMS simulation to correct the underground fluxes for variations in the indoor temperature. This flux correction is significant for unconditioned basements and crawl-spaces where the seasonal fluctuation in zone temperatures may be large. The "U-effectives" used in the modeling have been computed by regression analysis correlating the underground flux to the temperature differential between indoor and outdoor temperatures (Figure 1.8). This "U-effective" can be regarded as the steady-state U-value for an underground surface approximated as one-dimensional heat transfer from the space to the outside air. * ## **Building Prototypes** There are three building prototypes covered in the data base: detached one-story, attached two-story townhouse unit, and a low-rise two-story apartment module with an upper and lower unit. Table 1.1 gives the basic building dimensions. These are based on previous LBL prototypes (Huang et al. 1987, Turiel et al. 1986), except that the window area has been increased from 10% to 12% of floor area. These prototype descriptions were chosen to represent typical current construction practices. Since the final data base is expressed as *component loads* normalized by U-value, floor area, or perimeter length, the dimensions in Table 1.1 should not critically affect the data, unless the surface-to-volume ratios for the prototype buildings are highly atypical. Previous sensitivity analysis of the voluntary energy guidelines data base have already indicated that, in residential buildings, component loads vary linearly with its physical dimension (Huang et al. 1985). † ^{*} The Underground Space Center and LBL have expanded on this approach in later research done for a Foundation Design Handbook. An improved procedure was developed to accounted for heat flux to the deep ground, as well as long-term seasonal fluctuations in the "U-effective" term. This was done by iterative simulations using the USCUG and DOE-2 programs (Shen et al. 1987). [†] Component load is defined as the net annual contribution of each building component to the heating or cooling loads of the building. See Section 2 of this report for more discussion of this concept. Figure 1.8 Regression Analysis of Steady—State U—values for Basement Foundations in One—Story Prototype for Denver CO | | Foundation measure | U-effective | intercept | |---|--------------------|-------------|--------------| | 0 | FMO (uninsulated) | 1.647 | -3.87 | | • | FM1 (R-5 4 ft.) | .814 | <u>-3.86</u> | | 0 | FM2 (R-10 4 ft.) | . 654 | -3.84 | | Δ | FM3 (R-5 8 ft.) | 652 | -3.66 | | × | FM4 (R-10 8 ft.) | .438 | -3.56 | **Table 1.1 Prototype Building Dimensions** | | House Prototype | | | | | | | |--|-----------------------|-----------------------|----------------------------|--|--|--|--| | Building
Component | Detached
One-story | Attached
Townhouse | Apartment module (2 units) | | | | | | Building floor area (ft²) | 1540.0 | 1200.0 | 2400.0 | | | | | | Building volume (ft ³) | 12320.0 | 9600.0 | 19200.0 | | | | | | Roof area (ft²) | 1623.3 | 632.4 | 1264.9 | | | | | | Ceiling area (ft ²) | 1540.0 | 600.0 | 1200.0 | | | | | | Gross wall area (ft ²) | 1328.0 | 640.0 | 960.0 | | | | | | Net wall area | 1123.7 | 476.5 | 634.0 | | | | | | Window area | 184.8 | 144.0 | 288.0 | | | | | | Door area | 19.5 | 19.5 | 39.0 | | | | | | Foundation floor area (ft ²) | 1540.0 | 600.0 | 1200.0 | | | | | | Perimeter length (ft) | 166.0 | 40.0 | 60.0 | | | | |
Although the surface areas and volumes of the three prototypes are based on the typical house designs shown in Section 3.1 of the voluntary energy guidelines technical report (Huang et al. 1987) and the LBL multi-family prototype report (Turiel et al. 1985), an average orientation was achieved for modeling purposes by apportioning the amounts of wall, roof, windows, and door equally in four cardinal directions. Similarly, average shading from two adjacent houses was approximated by modeling building shades with a 0.50 transmittance located 20 feet away on all four sides of the prototype houses. The intent of the simulation is to model a prototypical building under average, rather than typical, conditions. The non-directional orientation used here, while hardly typical, gives results that are averages of thousands of typical houses with various orientations. ## **Building Envelope** #### Insulation All three prototype buildings were simulated with typical light-weight wood-frame construction, with sensitivity analyses done for heavy mass log and concrete block walls. The assumed ceiling, wall, and foundation construction assemblies are based on Section 3.3.1 of the voluntary energy guidelines technical support document, to which the reader should refer for more details. Previous analysis of the voluntary energy guidelines data base showed that the relationship between the change in loads and in the steady-state U-value of ceilings and walls to be a smooth and nearly linear function (Huang et al. 1985). The approach taken in the current data base effort has been to simulate not all typical ceiling and wall assemblies, but only enough variations in assembly U-value to determine the function relating component loads to U-values. These regression functions were then used to calculate ceiling and wall component loads based on their U-values. The WALFERF program was used to calculate response factors and steady-state U-values for typical ceiling and wall assemblies. These are listed in Table 1.2. DOE-2.1C simulations were done for four ceiling (R-0, 19, 38, and 49) and four light-frame wall assemblies (R-0, 11, 19, and 34). For ventilated crawl-space foundations, simulations were done for three floor assemblies (R-0, 11, and 30). Component loads for the intermediate assemblies were interpolated using the regression equations and U-values shown in Table 1.2. For the log and concrete block walls, DOE-2.1C simulations were done for all 15 wall assemblies listed in Table 1.2. Three foundation types were modeled for every base city: slab-on-grade, heated and unheated basements, and ventilated crawl-space. Heated basement refers to unconditioned basement with insulated basement walls, while unheated basements refers to basements with insulation under the floor of the living space. Fully conditioned basements were not considered. For non-foundation energy conservation options, simulations were done assuming the most prevalent foundation type for each location. These are listed on column 4 of Table 1.7 later in this report. The assumed foundation configurations are described in Section 3.3.1 of the voluntary energy guidelines technical support document (Huang et al. 1987), to which the reader should refer for details. Five levels of insulation were considered for the slab-on-grade and heated basement foundations, and three for the unheated basement and crawl-space foundations. These are listed in Table 1.3. The heat fluxes through foundation underground surfaces were simulated using the USCUG two-dimensional finite-difference model and stored onto a large file. The USCUG flux file was then read into the DOE-2 input as a function call in the LOADS portion of that program (see sample DOE-2.1C input file in Appendix A). The above-grade portion of the basement wall and the slab edge of the slab-on-grade have been included in the USCUG model to account for two-dimensional heat flows within the concrete and subsoil. Crawl-space walls, however, have been simulated as exterior walls using DOE-2.1C. To model the effects of ventilation, the crawl-space has been treated as a separate unconditioned zone with 1 ft² of vents per 30 ft. Table 1.2 Steady-state U-values for Building Components calculated using the WALFERF program | Building | - ::- | | U-values (Btu/hr·F·ft²) | | Film | | |----------------------------|--------------|-------------|-------------------------|------------|----------|--| | Component | File | w/ film | w/o film | | tances | | | | name | resistance* | resistance | Interior | Exterior | | | Ceilings | | | | | | | | R-0 | r0roof | .247034 | .321041 | .76 | .17 | | | R-7 | r7roof | .092780 | .101803 | .76 | .17 | | | R-11 | r11roof | .068155 | .072925 | .76 | .17 | | | R-19 | r19roof | .046033 | .048181 | .76 | .17 | | | R-22 | r22roof | .038894 | .040401 | .76 | .17 | | | R-30 | r30roof | .029325 | .030173 | .76 | .17 | | | R-38 | r38roof | .023549 | .024092 | .76 | .17 | | | R-49 | r49roof | .018460 | .018792 | .76 | .17 | | | R-60 | r60roof | .015177 | .015401 | .76 | .17 | | | Walls | | | .010+01 | .70 | .17 | | | R-0 wood-frame | r0rwall | .224129 | 277502 | 00 | 47 | | | R-7 " " | r7rwali | .105057 | .277502 | .68 | .17 | | | R-11 " " | r11rwall | | .115688 | .68 | .17 | | | R-13 " " | | .088104 | .095496 | .68 | .17 | | | R-19 " " | r13rwall | .069298 | .073808 | .68 | .17 | | | R-27 " " | r19rwall | .059977 | .063331 | .68 | .17 | | | R-34 " " | r27rwall | .042740 | .044414 | .68 | .17 | | | | r34rwall | .032154 | .033093 | .68 | .17 | | | 4in. log wall | 4log | .171422 | .200619 | .68 | .17 | | | 6in. " " | 6log | .120122 | .133764 | .68 | .17 | | | 8in. " " | 8log | .092455 | .100330 | .68 | .17 | | | 10in. " " | 10log | .075146 | .080267 | .68 | .17 | | | 12in. " " | 12log | .063296 | .066891 | .68 | .17 | | | R-0 95 lb. concrete block | r0cb95 | .295528 | .394517 | .68 | .17 | | | R-5 " " " " | r5cb95 | .135494 | .153107 | .68 | .17 | | | R-10 " " " " | r10cb95 | .080731 | .086672 | | 1 | | | R-15 " " " " | r15cb95 | .057599 | | .68 | .17 | | | R-30 " " " " | r30cb95 | | .060561 | .68 | .17 | | | | 1300093 | .030883 | .031714 | .68 | .17 | | | R-0 120 lb. concrete block | r0cb120 | .295527 | .394516 | .68 | .17 | | | R-5 " " " " | r5cb120 | .135493 | .153107 | .68 | .17 | | | R-10 " " " " | r10cb120 | .080731 | .086672 | .68 | .17 | | | R-15 " " " " | r15cb120 | .057599 | .060561 | .68 | .17 | | | R-30 " " " " | r30cb120 | .030883 | .031714 | .68 | .17 | | | Floors | | | | | | | | R-0 | rOffr | .213667 | .316359 | .76 | .76 | | | R-11 | r11flr | .069285 | .077474 | .76 | .76 | | | R-19 | r19flr | .047067 | .050711 | .76
.76 | .76 | | | R-30 | r30flr | .032783 | .034511 | .76
.76 | | | | R-38 | r38flr | .029522 | .030917 | .76
.76 | .76 | | | R-49 | r49fir | .029322 | .020752 | | .76 | | | 1173 | 143111 | .020114 | .020/52 | .76 | .76 | | ^{*} U-value used for matrix interpolations and regressions Table 1.3. Foundation Insulation Levels | Floor | Level of Insulation | | | | | | |-----------------|---------------------|---------------------------|---|--|--|--| | measure
code | Slab-on
grade | Ventilated
Crawl-space | Heated and unheated Basements | | | | | FMO | Uninsulated | Uninsulated | Uninsulated | | | | | FM1 | R-5 2ft. | R-11 floor | R-5 4ft. basement wall (heated) | | | | | FM2 | R-10 2ft. | R-19 floor * | R-10 4ft. basement wall (heated) | | | | | FM3 | R-5 4ft. | R-30 floor | R-5 8 ft. basement wall (heated) | | | | | FM4 | R-10 4ft. | R-49 floor * | R-10 8ft. basement wall (heated) | | | | | FM5 | | | Uninsulated basement wall,
R-11 floor (unheated) | | | | | FM6 | | | Uninsulated basement wall, R-30 floor (unheated) | | | | ^{*} not used in generating data base of perimeter. The ventilation air change rate was then modeled using the Sherman-Grimsrud model (Sherman et al. 1980). #### Infiltration The effects of infiltration on building heating and cooling loads have been simulated using the Sherman-Grimsrud model. This is a simplified physical model for air infiltration in residential buildings developed at LBL. "The only information necessary for the model is the geometry and leakage of the structure. The leakage quantities, expressed in terms of effective areas, are total leakage area and the leakage areas of the floor and ceiling. Weather parameters are mean wind speed, terrain class, and average temperature difference. The model separates the infiltration problem into two distinct parts: stack and wind-regimes. Each regime is treated separately; the transition between them is sharp. The model has been tested with data from several sites, differing in climate and construction methods." (Sherman et al. 1980). Parametric simulations were made for each prototype building at three infiltration levels with fractional effective-leakage-areas of 0.0007, 0.0005, and 0.0003, (expressed as a fraction of the total floor area). These conditions can be regarded roughly as tight, average, and loose constructions. For all simulations, the buildings are assumed to be located in areas of low buildings and trees within 30 feet of the house in most directions. The corresponding inputs for the Sherman-Grimsrud model are: Shielding-coefficient = 0.19, Terrain-parameter 1 = 0.85, and Terrain-parameter 2 = 0.20. Since the Sherman-Grimsrud model adjusts wind speeds for the height differential between the weather station and the local site, care has been taken to input the tower heights at which the wind speeds were taken. These may vary by month since the WYEC weather tapes used for the simulations are composed of monthly data taken from different years. # Window Characteristics One of the primary objectives for the current data base effort was to develop more comprehensive coverage of various new glazing products and window designs. With the proliferation of new glazing products, notably low-emissivity coatings, the previous method of
simulating typical single-, double-, and triple-pane windows has proven to be too restrictive and ambiguous. As in the analysis of insulation measures, the approach used for the current data base is not to simulate all possible window conditions, but a wide range of glazing characteristics from which equations can be developed through multiple regression analysis that would relate window component loads to their physical properties, namely *U-values* and *shading coefficients*. Previous LBL research have demonstrated the versatility of this technique for analyzing the energy performance of windows in buildings (Johnson et al. 1983; Sullivan et al. 1985). The use of shading coefficient to describe window solar gain is approximate, but the errors thereby introduced are tolerable, and more than offset by common understanding of this term, and the availability of such data from window manufacturers or research institutions. For example, the WINDOW 2.0 microcomputer program can be used to calculate shading coefficients for any glazing product given its glass optical properties and construction (Windows and Daylighting Group 1986). For the data base, DOE-2 simulations were done for three levels of window U-value while keeping shading coefficient fixed at 1.00, equivalent to clear single-pane windows (Table 1.4). These first U-values correspond to the ASHRAE value for single-pane windows, the second to that for double-pane windows with ½ inch air gap, and the third to a super window more efficient than any currently available product. The three data points thus span the range of possible U-values to be found in window products in the foreseeable future. To analyze the effect of solar gain through windows, four shading coefficients were considered: 1.00, 0.666, 0.333, and 0.000. The first two cover the range of Table 1.4. Window U-values | | | U-values | Outside | | |-----------------|--------------|------------------------------|------------------------------|--------------------| | Number of Panes | File
name | w/outside film resistances * | w/o outside film resistances | film
resistance | | Single-pane | 1-pane | 1.100 | 1.353 | .17 | | Double-pane | 2-pane | 0.490 | 0.535 | .17 | | Multiple-pane | M-pane | 0.098 | 0.100 | .17 | ^{*} corresponds to ASHRAE U-values used for interpolations and regressions. shading coefficients found in clear glass windows, and the second and third that found in some reflective glazings. The last shading coefficient corresponds to a totally opaque window, which is useful for diagnostic purposes. In the shading coefficient sensitivities, the glass U-value was held constant at 0.49, equivalent to double-pane windows. Table 1.5 is shown for reference. It gives shading coefficients for common glazing products calculated using the WINDOW 2.0 program. These shading coefficients can be used with the multiple regression results to interpolate window solar component loads. Table 1.5. Shading Coefficients for Typical Glazing Products calculated using the WINDOW 2.0 program | Glass
Type | Number of panes | DOE-2 Glass
Type Code | Shading Coefficient WINDOW 2.0 Adjusted | | |----------------|-----------------|--------------------------|---|----------| | туре | UI paries | Type Code | WINDOW 2.0 | Adjusted | | Regular | 1 | 1 | 1.038 | 1.000 | | • | 2 | 1 | .944 | .909 | | | 3 | 1 | .865 | .833 | | Reflective | 1 | 10 | .370 | .356 | | | 2 | 10 | .287 | .276 | | | 3 | 10 | .262 | .252 | | Heat Absorbing | 1 | 6 | .727 | .700 | | | 2 | 6 | .609 | .587 | | | 3 | 6 | .542 | .522 | ^{*} Shading coefficient is defined as the solar heat gain ratio relative to that for a reference glazing material, generally double-strength clear sheet glass at normal incidence (ASHRAE 1985). Due to slight differences in the assumed optical properties of clear glass compared to DOE-2.1, the WINDOW 2.0 program calculated a shading coefficient slightly higher than 1.00 for the base case single-pane glazing. In Column 4, these values have been adjusted to yield 1.00 for the base case. # **Building Operating Conditions** The assumed building operating conditions are taken from Section 4.0 of the voluntary energy guidelines technical document, to which the reader is referred for more details. The following describes only those operating conditions that have been modified from the earlier voluntary energy guidelines data base. - 1. The heating thermostat setting has been changed to 70° F all day, with no night setback. - The internal loads profile has been changed from that shown in Table 4.4b of the voluntary energy guidelines technical document to that developed by the California Energy Commission for their Title 24 Residential Energy Standards (Figure 1.9 and Table 1.6). Table 1.6. Internal Loads Schedule | Hour
of day | Internal
Ioad (Btu) | Hour of day | Internal
load (Btu) | |----------------|------------------------|-------------|------------------------| | 1 | 1346 | 13 | 2525 | | 2 | 1234 | 14 | 1683 | | 3 | 1178 | 15 | 1571 | | 4 | 1178 | 16 | 1739 | | 5 | 1178 | 17 | 3198 | | 6 | 1459 | 18 | 3591 | | 7 | 2132 | 19 | 3591 | | 8 | 3310 | 20 | 2917 | | 9 | 3142 | 21 | 2805 | | 10 | 3366 | 22 | 3086 | | 11: | 3310 | 23 | 2469 | | 12 | 2581 | 24 | 1215 | The new profile shows an internal loads peak in the evening due to cooking loads, plus a smaller peak at breakfast time. Although the new internal loads profile has not been validated, we believe it is more typical than the previous profile used by LBL, which showed the highest peak at 8 a.m., and a secondary peak at 11 p.m. 3. A time of day schedule has been added to the building ventilation that assumes occupants will not open windows for natural ventilation between 11 p.m. and 7 a.m. even if it is desirable to do so. If the windows are open at 11 p.m., they are assumed open through the night unless indoor temperatures drop below 70° F. Windows are assumed closed below that temperature to avoid picking up spurious heating loads. The venting algorithm has also been changed from a fixed air change rate to a variable rate calculated using the Sherman-Grimsrud residential infiltration model. It is assumed that opened windows have an "effective-leakage-area" only 30% of the total glazing area, due to obstructions and physical constraints that limit maximum openable area to half of the window area. * Figure 1.9 Internal loads profile for a 1540 ft² 1—Story prototype house ^{*} The natural ventilation algorithm is an enhancement to the DOE-2.1C program not available on the current public release version of DOE-2.1C. However, it will be included in future release versions. # **Building Locations** The base cities included in the data base are the 45 cities used for the voluntary energy guidelines data base. For this current work, however, simulations were done using WYEC (Weather Year for Energy Calculations) weather tapes (Crow 1981). These weather data are judged to be more reliable for estimating average annual energy consumptions than the TRY weather tapes used for the voluntary energy guidelines data base. For the twelve locations for which WYEC weather tapes were unavailable, TMY weather tapes were used (Table 1.7). Table 1.7 Building locations for residential data base | Building | Weather tape | | Prevalent | | | |-------------------|--------------|-----|-------------------------|--|--| | location | WYEC | TMY | foundation type | | | | Albuquerque NM | Χ | | Slab | | | | Atlanta GA | X | | Slab | | | | Birmingham AL | X | | Slab | | | | Bismarck ND | X | | Basement | | | | Boise ID | X | | Basement | | | | Boston MA | X | | Basement | | | | Brownsville TX | X | | Slab | | | | Buffalo NY | | X | Basement | | | | Burlington VT | | X | Basement | | | | Charleston SC | X | | Crawl-space | | | | Cheyenne WY | X | | Basement | | | | Chicago IL | X | | Basement | | | | Cincinnati OH | | X | Basement | | | | Denver CO | X | | Basement | | | | El Paso TX | X | | Slab | | | | Fort Worth TX | X | | Slab | | | | Fresno CA | | X | Slab | | | | Great Falls MO | X | | Basement | | | | Honolulu HA | • • | X | Slab | | | | Jacksonville FL | | X | Slab | | | | Juneau AK | | X | Basement | | | | Kansas City MO | X | ^ | Basement | | | | Lake Charles LA | X | | Slab | | | | Las Vegas NV | X | | Slab | | | | Los Angeles CA | X | | Slab | | | | Medford OR | X | | Crawl-space . | | | | Memphis TN | ~ | X | Crawl-space Crawl-space | | | | Miami FL | X | ^ | Slab | | | | Minneapolis MN | x | | Basement | | | | Nashville TN | x | | Slab | | | | New York NY | <u>x</u> | | | | | | Oklahoma City OK | x | | Basement
Slab | | | | Omaha NB | x | | Basement | | | | Philadelphia PA | ^ | X | Basement | | | | Phoenix AZ | X | ^ | Slab | | | | Pittsburgh PA | <u>x</u> | | | | | | Portland ME | X | | Basement | | | | Portland OR | x | | Basement Crawl space | | | | Reno NV | ^ | X | · Crawl-space
Slab | | | | | x | ^ | | | | | Salt Lake City UT | | | Basement | | | | San Antonio TX | X | V | Slab | | | | San Diego CA | | X | Slab | | | | San Francisco CA | V | X | Slab | | | | Seattle CA | X | | Basement | | | | Washington DC | X | | Basement | | | # ANALYSIS OF BUILDING HEATING AND COOLING LOADS #### **Component Loads** The new residential data base utilizes the concept of component loads developed through previous analysis of the voluntary energy guidelines data base. Component loads are defined as the net annual contribution of each building component to the heating or cooling loads of the building (Huang et al. 1985). They are calculated in a two-step process. First, Δ loads are calculated for different conservation levels in each component (ceiling, wall, window, etc.) relative to an arbitrarily chosen base case. Regression analysis is then done correlating these Δ loads to key physical parameters associated with each building component. For insulation, the parameter used is the steady-state conductance of the ceiling,
wall, foundation, or window; for infiltration, the parameter is the effective-leakage-area; and for window solar gain, the solar aperture (shading coefficient * window area). At the y-intercept of the regression curve, the component load is assumed to be zero. This corresponds to zero conductance for insulation, zero leakage-area for infiltration, and zero solar aperture for the solar gain measures. The component loads for the simulated cases are thus only a function of the regression curve: Component Load_{ceilings,walls,floors} = $$f$$ (conductance) [1] Component Load_{infiltration} = $$f$$ (effective-leakage-area) [2] Component Load_{solar gain} = $$f$$ (solar aperture) [3] The component loads thus calculated can be used to estimate the total loads for variations of the prototype house: - + Component Loadwall * UAwall) - + (Component Loadwindow * UAwindow) - + (Component Load_{solar gain} * Window solar aperture) - + (Component Load_{foundation} * UA_{foundation}) - + (Component Load_{infilt} * Effective-leakage-area) - + Residual Load The *residual load* is the difference between the total loads computed by this method and those from a DOE-2 simulation. They represent the net effect of internal loads and interactions not included in the component regression analyses. To calculate Δ loads for insulation measures, 30 DOE-2 simulations were done for each prototype building in the 45 locations. Table 2.1 describes the thermal characteristics of the house for each parametric simulation. The arrows on the table indicate which simulations were used to derive Δ loads for successive insulation levels. These simulations are identical except for the change in insulation level in a single component. Cumulative Δ loads are derived by summing successive Δ loads, and are actually composite values that assume all building components are thermally tightened in unison. For example, the Δ load from R-0 to R-38 ceiling is the sum of the Δ load from R-0 to R-19 ceiling on a loose uninsulated house, plus the Δ load from R-19 to R-38 ceiling on a moderately insulated house. This procedure produces Δ loads that are most representative of typical construction practices. #### Ceiling and Wall Measures The data base includes Δ loads for the following ceiling and wall insulation measures: R-0, R-19, R-38, and R-60 ceilings, and R-0, R-11, R-19, and R-34 light-frame walls. A quadratic curve fit was developed through regression analysis, using the U-value of the ceiling or wall as the independent variable, and its area as a scalar: Component Load = $$A * (U * Coef_{linear} + U^2 * Coef_{ouadratic})$$ [5] Sample regression plots for four cities are shown in Figures 2.1 through 2.4. The computed and interpolated total Δ loads, and component loads per ft², are shown on the tables in Section 3.A. The regression coefficients used for the interpolated values are listed on the tables directly below the Δ and component loads. "Slope" is the linear coefficient and in units of degree-days. "Curve" is the quadratic coefficient and in units of (degree day)²-ft²/Btu. The total component load of the ceiling or wall can be calculated as follows: Component Load (Btu) = $$A * (U * Slope * 24 + U^2 * Curve * 576)$$ [6] For example, for ceiling heating loads in Albuquerque the table in Section 3.A gives a "slope" of 4468.29 degree-days, and a "curve" of -111.14 degree day²·ft²/Btu. Since the U-value of a R-0 ceiling is .24703, the component heating load for an Table 2.1 List of DOE-2.1C Runs for Parametric Analysis of Insulation Measures (\downarrow 's indicate runs used to derive Δ loads for incremental measures) | | No. | | | Fou | ndation mea | sures | Effect. | ···· | |--------|------|---------|---------|----------------------|---------------------------------------|-------------------------------|--------------------|--------------------| | Option | of | Ceiling | Wall | | _ | | Leak. | Window | | code | runs | H-value | R-value | Slab | Basement | Crawl | frac. | U-value | | A00 | 1 | R-0↓ | R-0 | FMO | prevalent fo | und.† | .0007 | 1.35 | | C00 | 1 | R-19 | R-0 ↓ | FMC | prevalent fo | ound. | .0007 | 1.35 | | D00 | 1 | R-19 | R-11 | FMC | prevalent fo | ound. | .0007 | 1.35 | | D01 | 3 | R-19 | R-11 | FMO↓ | $FMO_{oldsymbol{\downarrow}}$ | $FM0_{oldsymbol{\downarrow}}$ | .0005 | 1.35 | | E01 | 3 | R-19 | R-11 | FM1 | FM1 | FM1 | .0005 | 1.35 _{].} | | F02 | 1 | R-19↓ | R-11 | FM1 prevalent found. | | | .0005 | .535 | | H09 | 1 | R-38 | R-11↓ | FM1 | prevalent fo | und. | .0005 | .535 | | 106 | 3 | R-38 | R-19 | FM1↓ | FM1↓ | FM1 | .0005 | .535 | | J01 | 3 | R-38 | R-19 | FM2 | FM2 | FM2 | .0005 ₁ | .535 | | M02 | 1 | R-38 | R-19 | | FM5 | | .0005 | .535 | | N09 | 1 | R-38 | R-19 | | FM6↓ | j | .0005 | .535 | | J51 | 1 | R-38↓ | R-19 | FM2 prevalent found. | | .0003 | .535 | | | L60 | 1 | R-60 | R-19↓ | FM2 | prevalent fo | und. | .0003 | .535 | | N55 | 3 | R-60 | R-34 | FM2 | $ extsf{FM2}_{oldsymbol{\downarrow}}$ | FM2 ₁ | .0003 | .535 | | O54 | 2 | R-60 | R-34 | FM3 _↓ | FM3 _↓ | FM3 | .0003 | .535 | | P53 | 3 | R-60 | R-34 | FM4 | FM4 | FM4 | .0003 | .535 ₁ | | Q52 | 1 | R-60 | R-34 | FM4 | prevalent fo | und. | .0003 | .100 | Total = 30 runs [†] prevalent foundation based on NAHB survey of foundation types in each city and listed in Table 1.6; See Table 1.3 for explanation of foundation code. Figure 2.1 Correlations of Δ Ceiling Heating Loads to U-values Figure 2.2 Correlations of Δ Ceiling Cooling Loads to U-values Figure 2.3 Correlations of Δ Wall Heating Loads to U-values Figure 2.4 Correlations of Δ Wall Cooling Loads to U-values uninsulated ceiling in a 1540 ft² house would be: or To analyze the effect of mass walls on energy use, simulations were done in the one-story prototype for five thicknesses of log walls (4, 6, 8, 10, and 12 inches), and five levels of interior insulation (R-0, R-5, R-10, R-15, R-30) in both 95 lb. and 120 lb. concrete block walls. For log and concrete block walls with less than R-10 insulation, the house was simulated with R-19 ceiling, R-11 wall, uninsulated foundation, single-pane windows, and 0.0005 effective-leakage-fraction. For concrete block walls above R-10, the house was simulated with R-38 ceiling, R-19 wall, and R-10 foundation insulation, double-pane windows, and 0.0005 effective-leakage-fraction. Mass walls with exterior insulation were not simulated. A quadratic curve fit was derived through regression analysis, using the steady-state U-value of the mass wall as the independent variable, and the wall area as a scalar. In addition to the two regression coefficients, an intercept was also calculated for the Δ load in kBtu/ft² from a light-frame wall to the uninsulated mass wall. The following equation defines the component load for a mass wall: Component Load (Btu) = Area * (U * Slope * $$24 + U^2$$ * Curve * 576) $$+ Area * Intercept * $10^3$$$ Two typical regression plots are shown in Figures 2.5 through 2.8. These indicate the Δ loads between light-frame and mass walls of the same steady-state U-value, as well as the nonlinearity in cooling Δ loads compared to U-values for mass walls in cities with large daily temperature swings such as Fresno. The Δ and component loads and regression coefficients for the three mass wall types are presented in Section 3.B. The format of the tables are identical to those in Section 3.A and explained earlier in this section. # **Foundation Insulation Measures** The data base includes simulation results for five insulation levels in the slab-on-grade (uninsulated, R-5 extending down 2 ft. and 4 ft., and R-10 extending down 2 ft. and 4 ft.), and the heated basement (uninsulated, R-5 extending down 4 ft. and 8 ft.), and R-10 extending down 4 ft. and 8 ft.), three in the unheated basement (uninsulated, Figure 2.5 Correlation of Δ Heating Loads to U-values for Mass Walls for Fresno CA Figure 2.6 Correlation of Δ Cooling Loads to U-values for Mass Walls for Fresno CA ## Legend - <u>Wood-frame R-34,19,11,0</u> - 951b ConcBlock R-30,15,10,5,0 - 1201b ConcBlock R-30,15,10,5,0 - O Log 12,10,8,6,4 in Figure 2.7 Correlation of Δ Heating Loads to U-values for Mass Walls for Buffalo NY Figure 2.8 Correlation of Δ Cooling Loads to U-values for Mass Walls for Miami FL ## Legend - <u>Wood-frame R-34,19,11,0</u> - □ 951b ConcBlock R-30,15,10,5,0 - 120lb ConcBlock R-30,15,10,5,0 - O Log 12,10,8,6,4 in R-11, and R-30 under the floor), and four in the vented crawl-space foundation (uninsulated, R-11, R-19, and R-38 under the floor). For the slab and heated basement conservation measures, quadratic curve fits were derived through regression analyses, using steady-state "U-effectives" from the USCUG model as the independent variable and the perimeter length as a scalar. These correlations are approximate due to the complex heat flow paths and thermal storage effects of the foundation and subsoil (Figures 2.9 through 2.12). As a result, we did not use the quadratic coefficients in the data base, but stored instead the component loads for each individual measure, normalized by the *perimeter length* of the prototype buildings. These appear on the tables in Section 3.A in units of kBtu's per perimeter foot. The regressions, however, were needed to determine the y-intercept when the "U-effective" is 0. At this condition, the foundation component load was assumed to be zero. For under-floor insulation measures in the unheated basement and crawl space foundations, quadratic curve fits were derived through regression analyses, using the floor U-value as the independent variable and the floor area as a scalar (Figures 2.13 to 2.16). Although the Δ loads are nonlinear due to interactions between the conditioned space and the basement or crawl space, they vary monotonically with floor U-value and can be
reduced to regression coefficients. Equation 6 is used to estimate component loads for these foundation measures from the coefficients. The Δ and component loads and regression coefficients are given in Section 3.A in the same format as for ceilings and walls. The differences in energy use between building foundation type is indicated by the "intercepts" in Section 3.A. These are given relative to the prevailing foundation type in each location (Table 1.7) and in units of kBtu's per perimeter feet for the slab and heated basement and per ft^2 of floor area for the unheated basement and crawl space foundations. These can be regarded as Δ loads not accounted for by the calculated building k-value. ## Infiltration The data base includes simulation results for the following three levels of infiltration: 0.0007, 0.0005, and 0.0003 effective-leakage-fractions (ELF). A quadratic curve fit was computed through regression analysis, using .001 ELF of the house as the independent variable, and the floor area as a scalar: Comp. Load (kBtu) = Area * (ELF * $$10^3$$ * Slope + ELF² * 10^6 * Curve) [9] Figure 2.9 Correlation of Δ Slab Foundation Heating Loads to Effective U-values Figure 2.10 Correlation of Δ Slab Foundation Cooling Loads to Effective U-values Figure 2.11 Correlation of Δ Heated Basement Heating Loads to Effective U-values Figure 2.12 Correlation of Δ Heated Basement Cooling Loads to Effective U-values Figure 2.13 Correlation of Δ Unheated Basement Heating Loads to Effective U—values Figure 2.14 Correlation of Δ Unheated Basement Cooling Loads to Effective U-values Figure 2.15 Correlation of Δ Crawl Foundation Heating Loads to Floor U—values Figure 2.16 Correlation of Δ Crawl Foundation Cooling Loads to Floor U-values Sample plots of these regressions for four cities are shown in Figures 2.17 through 2.18. A function has also been added to the DOE-2.1C input to calculate the average infiltration air change rate for the three effective-leakage-fractions for each location and prototype. The tables in Section 3 give the total Δ loads and component loads per ft² of floor due to infiltration, and the coefficients from the regression analyses. "Slope" is the linear regression coefficient in units of kBtu per .001 ELF, "Curve" is the quadratic coefficient in units of kBtu per (.001 ELF)². The numbers in parenthesis next to the effective-leakage-fractions are the corresponding average yearly infiltration rates in *ach* (air changes/hour). As shown in Figure 2.19, these are location-specific, but linearly dependent on effective-leakage-fraction within a particular location. ## Windows To analyze the impact on building loads due to changes in window U-value, three simulations were done for each prototype house and base city for 12% equally distributed windows with a constant shading coefficient of 1.00, and window U-values of 1.10, 0.49, and 0.10 (see Table 1.4). The assumed thermal integrity for the rest of the building is indicated in Table 2.1. Quadratic regressions were done, using the U-value of the window as the independent variable, and its area as a scalar: Comp. Load (Btu) = Area*($$U_{wind}$$ *Slope * 24 + U_{wind}^2 * Curve * 576) [10] Sample regression plots for four cities are shown in Figures 2.20 and 2.21. The Δ and component loads for window conduction per ft² are shown under "Window Uvalue" on the tables in Section 3.A. The loads for triple-pane windows are interpolated between double-pane and the R-10 multiple-pane windows. These loads are only for conductive losses and do not include the effects of solar gain through windows. To analyze the impact on building loads due to variations in window solar gain, a set of 52 parametric simulations were designed for the one-story prototype in each base city (Table 2.2). Twelve of these simulations cover shading coefficients of 1.00, 0.67, 0.33, and 0.00 for 8%, 12%, and 20% window areas (of floor area) equally distributed in four cardinal orientations. Forty simulations cover various window configurations ranging from 1% to 14% glazing area in one orientation, and from 8% to 20% total glazing area. Figure 2.17 Correlation of Δ Infiltration Heating Loads to Effective—leakage—fractions Figure 2.18 Correlation of Δ Infiltration Cooling Loads to Effective—leakage—fractions Figure 2.19 Correlation of Average Winter Air—change Rates to Effective Leakage—Fractions Figure 2.20 Correlation of Δ Window Conduction Heating Loads to Window U-values Figure 2.21 Correlation of Δ Window Conduction Cooling Loads to Window U-values Table 2.2 Parametric Analysis of Window Solar Gain Conditions (* = short parametric set done for 34 cities) | Run | Shading | | Winc | low/Floor Ra | tio (e/) | | |--------------------------|--------------------|--------------|--------------|--------------|--------------|-----------------| | code | Coefficient | North | East | South | West | Total | | | fficient simulatio | | Last | Coulii | 11031 | iolai | | 1 A north | 1.000 | 2.00 | 2.00 | 2.00 | 2.00 | 8.00 * | | 2 A north | 1.000 | 3.00 | 3.00 | 3.00 | 3.00 | 12.00 * | | 3 A north | 1.000 | 5.00 | 5.00 | 5.00 | 5.00 | 20.00 * | | 1 B north | 0.666 | 2.00 | 2.00 | 2.00 | 2.00 | 8.00 * | | 2 B north | 0.666 | 3.00 | 3.00 | 3.00 | 3.00 | 12.00 * | | 3 B north | 0.666 | 5.00 | 5.00 | 5.00 | 5.00 | 20.00 | | 1 C north | 0.333 | 2.00 | 2.00 | 2.00 | 2.00 | 8.00 | | 2 C north | 0.333 | 3.00 | 3.00 | 3.00 | 3.00 | 12.00 * | | 3 C north | 0.333 | 5.00 | 5.00 | 5.00 | 5.00 | 20.00 | | 1 D north | 0.000 | 2.00 | 2.00 | 2.00 | 2.00 | 8.00 * | | 2 D north | 0.000 | 3.00 | 3.00 | 3.00 | 3.00 | 12.00 | | 3 D north | 0.000 | 5.00 | 5.00 | 5.00 | 5.00 | 20.00 * | | | ntation simulatio | | 3.00 | 3.00 | 3.00 | 20.00 | | 4 A north | 1.000 | 0.00 | 2.67 | 2.67 | 2.67 | 8.00 | | 5 A north | 1.000 | 4.00 | 1.33 | 1.33 | 1.33 | 8.00 * | | 6 A north | 1.000 | 4.00 | 0.00 | 4.00 | 0.00 | 8.00 | | 7 A north | 1.000 | 0.00 | 4.00 | 4.00 | 4.00 | 12.00 * | | 8 A north | 1.000 | 6.00 | 2.00 | 2.00 | 2.00 | 12.00 * | | 9 A north | 1.000 | 6.00 | 0.00 | 6.00 | 0.00 | 12.00 | | 10 A north | | 1.00 | 6.33 | 6.33 | 6.33 | 20.00 | | 3 | 1.000 | 9.00 | | 3.67 | 3.67 | 20.00 | | 11 A north | 1.000 | 9.00 | 3.67
1.00 | 9.00 | 1.00 | 20.00 * | | 12 A north
13 A north | 1.000
1.000 | 14.00 | 2.00 | 2.00 | 2.00 | 20.00 * | | | | | 2.67 | 2.67 | 0.00 | | | 4 A east | 1.000 | 2.67 | | 1.33 | 4.00 | 8.00
8.00 * | | 5 A east | 1.000 | 1.33 | 1.33 | | | | | 6 A east | 1.000 | 0.00 | 4.00 | 0.00 | 4.00 | 8.00
12.00 * | | 7 A east | 1.000 | 4.00
2.00 | 4.00
2.00 | 4.00
2.00 | 0.00
6.00 | 12.00 | | 8 A east | 1.000
1.000 | 0.00 | 6.00 | 0.00 | 6.00 | 12.00 | | 9 A east | | 6.33 | 6.33 | 6.33 | 1.00 | 20.00 | | 10 A east | 1.000 | 3.67 | 3.67 | 3.67 | 9.00 | 20.00 | | 11 A east | 1.000 | | | | 9.00 | 20.00 * | | 12 A east | 1.000 | 1.00 | 9.00 | 1.00
2.00 | 14.00 | 20.00 * | | 13 A east | 1.000 | 2.00 | 2.00 | | | | | 4 A south | 1.000 | 2.67 | 2.67 | 0.00 | 2.67 | 8.00
8.00 * | | 5 A south | 1.000 | 1.33 | 1.33 | 4.00 | 1.33 | 8.00 | | 6 A south | 1.000 | 4.00 | 0.00 | 4.00 | 0.00
4.00 | 12.00 * | | 7 A south | 1.000 | 4.00 | 4.00 | 0.00
6.00 | 2.00 | 12.00 * | | 8 A south | 1.000 | 2.00 | 2.00 | | | 12.00 | | 9 A south | 1.000 | 6.00 | 0.00 | 6.00 | 0.00
6.33 | 20.00 | | 10 A south | 1.000 | 6.33 | 6.33 | 1.00
9.00 | 3.67 | 20.00 | | 11 A south | 1.000 | 3.67 | 3.67 | 9.00 | 1.00 | 20.00 | | 12 A south | 1.000 | 9.00 | 1.00
2.00 | 14.00 | 2.00 | 20.00 * | | 13 A south | 1.000 | 2.00 | | 2.67 | 2.67 | 8.00 | | 4 A west | 1.000 | 2.67 | 0.00 | | 1.33 | 8.00 * | | 5 A west | 1.000 | 1.33 | 4.00
4.00 | 1.33
0.00 | 4.00 | 8.00
8.00 | | 6 A west | 1.000 | 0.00 | | 4.00 | 4.00 | 12.00 * | | 7 A west | 1.000 | 4.00 | 0.00 | 2.00 | 2.00 | 12.00 | | 8 A west | 1.000 | 2.00 | 6.00 | | 6.00 | 12.00 | | 9 A west | 1.000 | 0.00 | 6.00 | 0.00 | | 20.00 | | 10 A west | 1.000 | 6.33 | 1.00 | 6.33 | 6.33 | 20.00 | | 11 A west | 1.000 | 3.67 | 9.00 | 3.67 | 3.67 | 20.00 | | 12 A west | 1.000 | 1.00 | 9.00 | 1.00
2.00 | 9.00
2.00 | 20.00 * | | 13 A west | 1.000 | 2.00 | 14.00 | 2.00 | ۷.00 | 20.00 | Analysis of the sensitivity results indicated that a quadratic multi-variant regression equation using five independent parameters produced reliable correlations with R²'s typically above .999 for heating, and .997 for cooling loads, except for locations with insignificant loads. Tables 2.3 and 2.4 show sample regression results for heating loads in Albuquerque and cooling loads in Phoenix. Because of the high reliability of this regression technique, the full set of 52 simulations were done for only 11 cities, and an abbreviated set of 25 done for the remaining 34 cities. * The regression methodology reduces the DOE-2 test results to five coefficients, four related to the window solar aperture (shading coefficient * area) in each orientation, and one to the total solar gain into the house. $$A = \sum_{i=1}^{4} \alpha_{i} * (area_{i}*shading coefficient_{i})$$ [11] Load_{window solar} = $$A^*(\beta^*A + 1) + Load_{0 \text{ solar aperture}}$$ The first term (A) is the total solar gain into the house. The second term ($\beta^*A + 1$) is the "solar usability" expressed as a linear function of the total solar gain (A) and relative to 1 for a house with zero solar aperture. The linear relationship between usability and solar gain is based on analysis of test simulations that indicate *dload/dsolar aperture* of houses with equally distributed windows is roughly linear to the total solar aperture (Figure 2.22). The "solar usability" term is not needed for estimating cooling loads, since a simple multi-linear regression produces good correlations to the DOE-2 Δ loads for changes in window orientation and shading coefficient (compare Figure 2.23 to Figure 2.24). For heating, however,
Δ loads due to increased solar gain varies with the total amount of solar gain entering the house. As the solar gain increases, its usability decreases since increasing amounts are vented or occur on days when the house has no heating load. As a result, a simple multi-linear correlation similar to the one in Figure 2.23 produces significant scatter with a standard error of 0.7MBtu in Albuquerque (Figure 2.25). Adding the "solar usability" term estimated as a linear function of total solar gain improves the regression and reduces the standard error to 0.12MBtu (Figure 2.26). The window solar gain coefficients are listed in the tables in Section 3.B below the mass wall regression results. The units for the four α are kBtu/ft², while the β ^{*} The 11 cities correspond to the Window Sensitivity Base Cities selected out the 45 for the voluntary guidelines data base (see Section 5.5 of Huang et al. 1987). The cities are: Albuquerque, Atlanta, Chicago, Denver, Lake Charles, Miami, Minneapolis, New York, Phoenix, San Francisco, and Seattle. Table 2.3 Window Regression Analysis for Denver Heating Loads | Denve | er CO | Heat | | | | | | | |------------|--------|---------|-------------|---------|-------------|----------------|------------|-------| | | Shac | . W | indow area | (sq.ft. |) | Del Load | Predicted | | | Total | Coef | • North | East | South | West | (MBtu) | (MBtu) | | | 8.002 | 1.000 | 30.8 | 3Ø.8 | 30.8 | 3Ø.8 | -12.697 | -12.574 | | | 12.00% | 1.000 | | 46.2 | 46.2 | 46.2 | -17.690 | -17.605 | | | 20.00% | | | 77.0 | 77.8 | 77.8 | | -25.259 | | | 8.00% | | | 30.8 | 30.8 | 3Ø.8 | -8.837 | | | | 12.00% | | | 46.2 | 46.2 | 46.2 | -12.62Ø | -8.766 | | | 20.00% | | | 77.Ø | 77.Ø | 77.Ø | | -12.563 | | | 8.00% | | | 30.8 | 30.8 | | -19.277 | -19.089 | | | 12.00% | | | | | 30.8 | -4.587 | -4.613 | | | | | | 46.2 | 46.2 | 46.2 | -6.7 <i>00</i> | -6.734 | | | 20.00% | | | 77.Ø | 77.0 | 77.Ø | -10.667 | -1Ø.7Ø9 | | | 8.00% | | | 30.8 | 30.8 | 30.8 | Ø37 | 105 | | | 12.00% | | | 46.2 | 46.2 | 46.2 | .øøø | 105 | | | 20.00% | | | 77.Ø | 77.Ø | 77.Ø | Ø37 | 105 | | | 8.00% | | | 41.1 | 41.1 | 41.1 | -14.697 | -14.554 | ü | | 8.00% | 1.000 | 61.6 | 20.5 | 20.5 | 20.5 | -10.557 | -10.481 | | | 8.00% | 1.000 | 61.6 | .ø | 61.6 | .ø | -13.077 | -13.375 | | | 12.00% | 1.000 | ı .ø | 61.6 | 61.6 | 61.6 | -2Ø.15Ø | -20.082 | | | 12.88% | | | 30.8 | 30.8 | 30.8 | -14.92Ø | -14.875 | | | 12.00X | | | .ø | 92.4 | .ø | -18.28ø | -18.620 | | | 20.00% | | | 97.5 | 97.5 | 97.5 | -27.657 | -27.301 | | | 20.00% | | | 56.5 | 56.5 | 56.5 | -22.937 | | | | 2Ø.ØØX | | | 15.4 | 138.6 | 15.4 | | -22.766 | | | | | | | | | -26.137 | -26.125 | | | 20.00% | | | 30.8 | 30.8 | 30.8 | -18.987 | -19.015 | | | 8.00% | | | 41.1 | .0 | 41.1 | -10.187 | -9.988 | | | 8.00X | | | 20.5 | 61.6 | 20.5 | -15.007 | -15.060 | | | 12.00% | | | 61.6 | . Ø | 61.6 | -14.18Ø | -14.1Ø8 | | | 12.00% | | | 3Ø.8 | 92.4 | 3Ø.8 | -20.630 | -20.695 | | | 20.00% | | | 97.5 | 15.4 | 97.5 | -21.857 | -22.Ø29 | | | 2Ø.ØØ% | | | 56.5 | 138.6 | 56.5 | -28.827 | -27.766 | | | 20.00% | | | 30.8 | 215.6 | 3Ø.8 | -29.707 | -29.885 | | | 8.00% | 1.000 | 41.1 | .Ø | 41.1 | 41.1 | -12.527 | -12.625 | | | 8.00% | 1.000 | 20.5 | 61.6 | 20.5 | 20.5 | -12.667 | -12.523 | | | 8.00% | 1.000 | | 61.6 | .ø | 61.6 | -12.827 | -11.755 | | | 12.00% | 1.000 | | . Ø | 61.6 | 61.6 | -17.460 | -17.67Ø | | | 12.00% | | | 92.4 | 30.8 | 30.8 | -17.500 | -17.54Ø | | | 12.00% | | | 92.4 | .ø | 92.4 | -16.430 | -16.55Ø | | | 20.00% | | | 15.4 | 97.5 | 97.5 | -25.337 | -25.315 | | | 20.00% | | | 138.6 | 56.5 | 56.5 | -25.207 | -25.202 | | | 20.00% | | 15.4 | 138.6 | 15.4 | 138.6 | -24.017 | | | | | | | | | | | -24.321 | | | 20.00% | | | 215.6 | 30.8 | 30.8 | -24.587 | -25.13Ø | | | 8.00% | | | 41.1 | 41.1 | .ø | -13.057 | -13.868 | | | 8.00% | 1.000 | | 20.5 | 20.5 | 61.6 | -12.217 | -12.Ø82 | | | 12.00X | | | 61.6 | 61.6 | .ø | -18.19Ø | -18.223 | | | 12.00% | 1.000 | | 30.8 | 30.8 | 92.4 | -16.93Ø | -16.973 | | | 20.00% | 1.000 | | 97.5 | 97.5 | 15:4 | -26.847 | -25.79Ø | | | 20.00% | 1.000 | 56.5 | 56.5 | 56.5 | 138.6 | -24.767 | -24.781 | | | 20.00% | 1.000 | | 30.8 | 30.8 | 215.6 | -23.657 | -23.968 | | | Alphas (KB | tu/sf} | | -112.636 -1 | 95.523 | -98.823 | Beta= .88 | 810 Inter= | 18458 | | • | | | fail= # | flag= | | | | | | | | | Msg = .9993 | 32 St. | andard Erre | or (MRtii) w | 182212 | | Rsq = .999486 RMsq = .999332 Standard Error (MBtu) = .182212 Table 2.4 Window Regression Analysis for Phoenix Cooling Loads | | | | | | | ** . | | | |--------------|------------|-----------|---------------------|--------------------|----------|-------------|-----------|-------| | Phoeni | Iu A7 | C = - 1 | | | | | | | | i noen i | | Cool | | | | | | | | T.A.1 | Shad | . W | indow area | | | Del Load | Predicted | | | Total | Coef | North | East | South | Vest | (MBtu) | (MBtu) | | | 3.00% | 1.000 | 30.8 | 3Ø.8 | 30.8 | 3Ø.8 | 8.253 | 8.190 | | | 12.00% | 1.000 | 46.2 | 46.2 | 46.2 | 46.2 | 12.340 | 12.410 | | | 20.00% | 1.000 | 77.Ø | 77.Ø | 77.8 | 77.Ø | 20.753 | | | | 8.00% | .666 | 30.8 | 30.8 | 30.8 | 30.8 | | 21.059 | | | 12.00% | .666 | 46.2 | 46.2 | 46.2 | | 5.393 | 5.409 | | | 2Ø.ØØX | .666 | 77.Ø | 77.Ø | | 46.2 | 8.120 | 8.181 | | | 8.00% | .333 | 77.20 | | 77.Ø | 77.ø | 13.403 | 13.818 | | | | | 30.8 | 30.8 | 30.8 | 30.8 | 2.683 | . 2.667 | | | 12.00% | .333 | 46.2 | 46.2 | 46.2 | 46.2 | 3.99Ø | 4.034 | | | 20.00% | .333 | 77.Ø | 77.Ø | 77.Ø | 77.Ø | 6.513 | 6.791 | | | 8.00% | .øøø | 3Ø.8 | 3Ø.8 | 30.8 | 30.8 | .003 | 044 | | | 12.00% | .øøø | 46.2 | 46.2 | 46.2 | 46.2 | . DØØ | | | | 20.00% | .000 | 77.Ø | 77.0 | 77.8 | 77.8 | | 044 | | | 8.00% | 1.000 | .ø | 41.1 | 41.1 | 41.1 | .003 | 044 | | | 8.00% | 1.000 | 61.6 | 20.5 | | | 9.403 | 9.532 | | | 8.00% | 1.000 | 61.6 | | 20.5 | 20.5 | 7.083 | 6.855 | | | | | | .ø | 61.6 | .Ø | 6.113 | 6.305 | | | 12.00% | 1.000 | .ø | 61.6 | 61.6 | 61.6 | 14.13Ø | 14.459 | | | 12.00% | 1.000 | 92.4 | 3Ø.8 | 3 0.8 | 30.8 | 10.670 | 10.378 | | | 12.00% | 1.000 | 92.4 | .ø | 92.4 | .ø | 9.290 | 9.542 | | | 2Ø.ØØ% | 1.000 | 15.4 | 97.5 | 97.5 | 97.5 | 23.383 | | | | 20.00% | 1.000 | 138.6 | 56.5 | 56.5 | 56.5 | 10 222 | 23.882 | | | 20.00% | 1.000 | 138.6 | 15.4 | 138.6 | 15.4 | 18.233 | 18.264 | | | 20.00% | 1.000 | 215.6 | | | | 17.053 | 17.117 | | | 3.00% | 1.000 | 41.1 | 30.8 | 30.8 | 30.8 | 15.363 | 14.810 | | | | | | 41.1 | .ø | 41.1 | 8.523 | 8.112 | | | 8.00% | 1.003 | 20.5 | 2Ø.5 | 61.6 | 20.5 | 8.003 | 8.267 | | | 8.00% | 1.000 | 61.6 | .ø | 61.6 | .ø | 6.113 | 6.305 | | | 12.00% | 1.000 | 61.6 | 61.6 | .ø | 61.6 | 12.710 | 12.292 | | | 12.00% | 1.000 | 3Ø.8 | 30.8 | 92.4 | 30.8 | 12.070 | 12.528 | | | 12.00% | 1.000 | 92.4 | . Ø | 92.4 | .ø | 9.290 | | | | 20.00% | 1.000 | 97.5 | 97.5 | 15.4 | 97.5 | 20.520 | 9.542 | | | 20.00% | 1.000 | 56.5 | 56.5 | 138.6 | 57.5 | 20.903 | 20.896 | | | 20.00% | 1.000 | 138.6 | | | 56.5 | 20.873 | 21.221 | | | 20.00% | | | 15.4 | 138.6 | 15.4 | 17.Ø53 | 17.117 | | | | 1.000 | 3ø.8 | 3Ø.8 | 215.6 | 30.8 | 23.033 | 21.424 | | | 8.00% | 1.030 | 41.1 | 41.1 | 41.1 | .ø | 7.443 | 7.438 | | | 8.00% | 1.000 | 20.5 | 20.5 | 2Ø.5 | 61.6 | 9.023 | 8.944 | | | 8.00% | 1.000 | .ø | 61.6 | .ø | 61.6 | 10.363 | 10.088 | | | 12.00% | 1.000 | 61.6 | 61.6 | 61.6 | .ø | 11.190 | | | | 12.00% | 1.000 | 30.8 | 30.8 | 30.8 | 92.4 | 11.130 | 11.265 | | | 12.00% | 1.000 | .ø | 92.4 | | 22.4 | 13.570 | 13.561 | | | 2Ø.ØØX | 1.000 | 97.5 | | .ø | 32.4 | 15.50Ø | 15.31Ø | | | | | 3/.5 | 97.5 | 97.5 | 15.4 | 19.193 | 19.483 | | | 20.00% | 1.000 | 56.5 | 56.5 | 56.5 | 138.6 | 22.353 | 22.643 | | | 20.00% | 1.000 | 15.4 | 138.6 | 15.4 | 138.6 | 24.703 | 25.Ø57 | | | 2Ø.Ø0% | 1.000 | 30.8 | 3Ø.8 | 3Ø.8 | 215.6 | 25.283 | 24.636 | | | 8.00% | 1.000 | 41.1 | . Ø | 41.1 | 41.1 | 7.623 | 7.682 | | | 8.00% | 1.000 | 20.5 | 61.6 | 20.5 | 20.5 | | | | | 8.00% | 1.000 | .ø | 61.6 | .ø | 61.6 | 8.873 | 8.698 | | | 12.00X | 1.000 | 61.6 | 01.0 . | 61.6 | | 10.363 | 10.088 | | | 12.00% | | | .ø | | 61.6 | 11.490 | 11.637 | | | | 1.000 | 30.8 | 92.4 | 3Ø.8 | 30.8 | 13.300 | 13.186 | | | 12.00% | 1.000 | . ø | 92.4 | . Ø | 92.4 | 15.50Ø | 15.310 | | | 20.00% | 1.000 | 97.5 | 15.4 | 97.5 | 97.5 | 19.833 | 19.994 | | | 2Ø.ØØ% | 1.000 | 56.·5 | 138.6 | 56.5 | 56.5 | 21.773 | 22.127 | | | 20.00% | 1.000 | 15.4 | 138.6 | 15.4 | 138.6 | 24.703 | 25.057 | | | 20.00% | 1.000 | 30.8 | 215.6 | 30.8 | 3Ø.8 | 24.113 | 23.469 | | | Alphas (KBtu | | 34.200 | | | 83.439 | | | ~ | | | | .4316 Ifa | | 67.536
Flag=<** | | Beta= .002 | ii inter= | 04413 | | | lsq = .997 | | | |
 | (140) | | •. | | , r | .a433 | rood KMS | sq = .9 9 7Ø | os stan | garg Err | or (MBtu) = | .351688 | | | | | | | | | | | | Figure 2.22 d(Load)/d(Solar Aperture) as a Function of Total Solar Aperture in Albuquerque NM Figure 2.23 Multi-linear Correlation of Δ Cooling Loads to Solar Aperture in Phoenix Figure 2.24 Correlation of Δ Cooling Loads to Solar Aperture * Solar Usability in Phoenix Figure 2.25 Multi-linear Correlation of Δ Heating Loads to Solar Aperture in Albuquerque Figure 2.26 Correlation of Δ Heating Loads to Solar Aperture * Solar Usability in Albuquerque relative "solar usability" term is dimensionless. An intercept from the regression is also shown, but was not used in the data base. The coefficients can be used with Equation 11 to calculate the solar gain component load for different window configurations. ## RESULTS ## **Tables for Insulation and Infiltration Measures** Section 3.A contain tables of insulation and infiltration measures for the three prototype buildings in 45 base locations. For each conservation measure, the tables show the total Δ load for the prototype house in MBtu, and the component load in kBtu normalized by ft^2 for ceiling, wall, window, and floor insulation measures, by perimeter ft. for foundation perimeter insulation measures, and by ft^2 of floor area
for infiltration measures. For the foundation measures, the Δ loads are relative to the foundation type with the highest load, generally the crawl space, while the component loads are relative to the regression intercept for the most prevalent foundation type in each location as listed in Table 1.7. Following the Δ and component loads, the tables give the two regression coefficients. The linear coefficients are listed as "Slope", and the quadratic coefficients as "Curve". As described in Section 2.A, the component loads are assumed to be zero at zero U-value for insulation measures and zero leakage area for infiltration measures. Therefore, the intercepts are always zero except for the foundation measures. For foundations, the intercepts indicate Δ loads between foundation types unrelated to building conductance. These are given relative to the prevalent foundation type and in units of kBtu/ft for slabs and heated basements, and kBtu/ft² for unheated basements and crawl-spaces. At the bottom are listed the *Base, Typical, and Residual Loads*. The *Base Load* is the total building load for a worst case building with no insulation, 0.007 effective-leakage-fraction, and the foundation type with the highest load, generally crawl space. It is the reference condition from which the Δ loads are calculated. To estimate the total loads for a prototype house in other configurations, subtract the Δ loads for the appropriate conservation levels from the base load. In addition to the Δ loads in this section, the Δ loads for various mass walls and window solar effects in Section 3.B must also be included. For the *Base Load*, the windows are assumed to be single-pane of average orientation with a shading coefficient of 1.00. The *Typical Load* is the total building load for an house of average thermal integrity in each location. This figure is not used in the data base and included only for reference. The Residual Load is explained in Section 2.A, and corresponds to the difference from the DOE-2 data and the sum of the component loads calculated through the regression analyses. To estimate the total loads for a particular house configuration using the component loads approach, multiply the component loads by the normalization (i.g., square feet of ceiling, perimeter feet of slab edge, etc.), and then sum the results, including the residual load. Alternatively, the regression coefficients can be used as explained in Section 2.A. | | | omponent
(KBtu) | (/sf)
4.18
2.14
1.85
1.43 | 916.7
26.03 | (/ft) | 9.71
8.02
7.90
7.42
7.12
5.693
158.13 | (/sf) | 2,75
2,98
2,92
2,88
2,88
2,786
2,749
201.58 | 3.3
1.00
1.00 | 66.23
2.236 | | |------------|-----------|---------------------|--|---|-----------|--|-----------------------|--|--|------------------------|----------------------------------| | | סי | Delta Co
(MBtu) | -2.61
-3.69 | -3.68
-3.89
(00) | asement | -2.63
-2.91
-2.93
-3.01
-3.06
(DD)
(DD) | | .88
.35
.25
.28
.19
.18
(DD) | | (S00)
(008) | MBtu
MBtu
MBtu | | | oling Loa | | Wa R-6 R-7 R-11 R-13 | 0 0 E | Heated Ba | R-6
R-5 4ft
R-5 8ft
R-16 4ft
R-10 8ft
Inter
Slope
Curve | Crawl | -0
-11 flr
-13 flr
-38 flr
-49 flr
Inter
Slope
Curve | indow U-
1-Pane
2-Pane
3-Pane
R-10 | Slope
Curve | 31.91 MB
12.23 MB
-1.02 MB | | | S | omponent (KBtu) | (/sf)
10.22
4.09
3.11
2.23
1.89 | 1.1
1.1
.9
.7
689.6 | (/ft) | 52
32
62
68
68 | (/st) (| 1.05 R
2.03 R
2.23 R
2.37 R
2.731 R
R
R
80.16 | sf fir) W
.49
.33
.19 | .162 | Load = Load = | | ow ∐ wo | | Delta Com
(MBtu) | . 000
- 9.44
- 10.95
- 12.30 | -13.95
-14.33
-14.58
(DD) 2
(DDS) - | | -4.68
-4.53
-4.51
-4.51
-4.42
(00)
(00) | Basement | -2.63
-1.14
81
59
59
(0D) -4
(0DS) 2 | tion (/
)00
)24
)46 | Ø1ELF
Ø1ELF | Base
Typical
Residual | | Serie | | | Ce : 1
R-0
R-7
R-11
R-12
R-22 | 8 4 4 6 9 6 9 6 9 6 9 6 9 6 9 6 9 6 9 6 9 | Slab | 0 2 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 | Unheated | R-11 flr
R-19 flr
R-30 flr
Interc
Slopel | Infiltrat
ELF Ach
.0007(.53)
.0005(.38)
.0003(.23) | Slope/.00
Curve/.00 | | | pe Siding | | ponent
(KBtu) | (/sf)
19.81
9.44
7.96
6.18
5.29 | າດ ຕໍ | (/ft) | 882
882
883
883
883
883
883
883
883
883 | (/sf) | 14.76
3.75
1.90
.85
.61
08
1.775
39.94
2.660 | (/sf)
36.15
22.75
6.98 | 43.49
1.105 | | | Prototy | ъ | Delta Com
(MBtu) | .000
-11.65
-13.31
-15.32
-16.31
-17.95 | 18.95
18.95
0) 3 | asement | -8.95
-14.13
-15.20
-15.42
-17.02
-17.02
e(DD) 28 | | .000
-16.95
-19.79
-21.78
-22.85
-22.85
(0D) 33
(0DS) -2 | . 000
-9.11
-11.59 | (00) 29.
(008) 13 | Btu
Btu | | One Story | ating Loa | | Wall
R-0
R-11
R-113
R-19 | Slop
Curv | Heated B | -5 8ft
-10 8ft
-10 8ft
-10 8ft
-10 8ft | _ ¥er⊃ | R-0
R-11 f-r
R-19 f-r
R-38 f-r
R-49 f-r
Inter
Slope
Curve | Window U-
1-Pane
2-Pane
3-Pane
R-10 | Slope | 100.60 M
36.08 M
2.71 M | | WYEC | Å. | omponent
(KBtu) | (/sf)
22.58
8.94
6.76
4.81
3.07 | 2.4
1.9
1.6
1.6
1468.2 | (/ft) | 39.7
20.2
16.6
16.3
11.5
11.5
155.7 | (/st) | 8.94
3:40
1.90
1.90
-1.623
76.762 | (/sf flr)
8.89
5.99
3.38 | 10.194
3.572 | e Load =
 Load =
 Load = | | WN enb | | Deita Co
(MBtu) | ing
-21
-27
-28
-38 | -30.97
-31.77
-32.28
(DD) | | -16.12
-19.37
-19.96
-20.81
-20.81
-20.81
-20.81
-20.81
-20.81
-20.81
-20.81
-20.81 | a semen | -8.95
-17.49
-19.79
-21.27
:ept
(DD) 3 | ion
-4.46
-8.48 | .001ELF
.001ELF | Base
Typica
Residua | | Albuquerqu | | | Ce:-
R-6
R-11
R-119
R-22
R-38 | 8 4 4 6 9 6 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 | | R-6
R-5 2ft
R-10 4ft
R-10 4ft
Intel
Slope
Curve | 0
0
0
0
0 | R-10 flr
R-19 flr
R-30 flr
Interc
Slope | Infiltrat
ELF Ach
.0007(.71)
.0005(.50)
.0003(.30) | Slope/.Ø
Curve/.Ø | | | | | onent
(Btu) | ,
(/sf) | 4.73 | 4.0
4.0 | 1.59 | 1.35 | 1.01 | 9
8 | 0.93 | 9 | /ft) | 4 | ຫຼເ | " | 7.97
.199
4.78 | 6 | /st) | 3.76
3.08
3.08
3.08 | 9.00 | 100 | 4 | 4 10 00 0 | டம் க | | |-------------|-------------|--------------------------------|--------------|--------------|------------|-------|-------|-------------|--|---------------|-------------|-----------|----------------|--------|-----------|------------------------------------|-------------------|--------|--|-----------------|---|------------|------------------------------------|---------------------------|---| | | | Delta Componer
(MBtu) (KBtı | • | <i>a</i> - | | 4 | φ. | -1.77 | 0 | (DD) 1020 | ' | ement (| 89. | 400 | .95 | . 94 18 18 4-4 | | > | 11999 | . 19 |) 135
(S) -35. | | |) -97
5) 4. | | | | ooling Load | 9 C | Wall | 7 0
9 -
6 | 7 | 77 | 7 | R-27 | ? | • | 0 v r v | eated Bas | 80 1 | 4 00 | 10 4f | 10 8ft
Inte
Slop | 6
1 | 0 | 1111 4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | 9 fir
Inter | Slope (DD)
Curve (DD) | T Mopu | 1-Pane
2-Pane
3-Pane
R-10 | Slope (DD)
Curve (DD) | 20.12 MBtu
11.89 MBtu
4.25 MBtu | | | Cool | Component
(KBtu) | s, | | ! -: | ~ | œ. | 1.43 | .91 | - 4 | 8 | (/ft) H | 02.0 | 2.28 R | . 53
R | -1.78 R
.000
51.14 | /.201
(/sf) (| | 2.28
2.28
4.46
8.46
8.46
8.46
8.46
8.46
8.46
8.4 | R 007. | 02.69
4.593 | sf fir) W: | . 19
. 07
. 01 | 167
.625 | Load ==================================== | | ss Two | | Delta Com
(MBtu) | ing. | 20 00 | -4.5 | -5.0 | 5.1 | ין
הייני | -5
-5
-6
-6
-6
-6
-6
-6
-6
-6
-6
-6
-6
-6
-6 | (<u>0</u> 0) | 1 | | -1.81 | - ^- | ~ | -1.73
rcept
e(DD) -7 | (bos)
Basement | | 1 1 1 1 1 2 2 8 9 9 8 9 9 8 9 9 9 9 9 9 9 9 9 9 9 | | lope(DD) -40;
urve(DDS) 24 | tion (/ | | | Base
Typical
Residual | | g Series | | | Ceit | R-7 | · - | 7 | កុ | . W | R - R - A - A - A - A - A - A - A - A - | 9 | ,
L
I | Slab | 57 GS 74 | မှ | -10 2f | IN 4ft
Inte | ted | | R-0
R-11 flr
R-19 flr
R-30 flr | Inter | 0100
Curve | Infiltra | 200 | Slope/.001
Curve/.001 | | | Sidin | | ponent
(KBtu) | (/sf) | 9.0 | 4. | œί | s o | . ci | | 715.90 | • | (/ft) | 5.7 | 6 | 8, | 31.50
15.486
573.11
7.027 | /sf | | 13.42
3.67
2.17
1.37
1.18 | 9.63
9.63 | 62.8
Ø.22 | (/sf) | 67.06
22.83
14.02
3.66 | 59.66
Ø.931 | | | Prototype | P | Delta Comp.
(MBtu) (H | 20 | ø | -5.7 | | 2.0.7 | -7: | | (DD) 2 | • (222) | asement | ' ' | 4.9- | -6.5 | (00) 1 | • | į | -5.85
-6.75
-7.23 | -7.66
cept | (00s) 5 | value | .00
-6.37
-7.64
-9.13 | (00) 14
(00S) 4 | MBtu
MBtu
MBtu | | Mid Town | ating Loa | | Wall
R-6 | R-7 | R-11 | 7 - | , c | ı m | | Slop | | Heated B | R-0
R-5 4ft | 5 | 4 6 | Inte
Slop
Curv | | e
o | R-11
R-13
R-38
F-1
S-38
F-1
S-38
F-1
S-38
F-1
S-38
F-1
S-38
F-1
S-1
S-1
S-1
S-1
S-1
S-1
S-1
S-1
S-1
S | -49 †lr
Inte | 0 - 2
0 - 2
0 - 2
0 - 2
0 - 3 | Window U- | 1-Pane
2-Pane
3-Pane
R-10 | Slope | 45.68 M
17.51 M
6.49 MI | | WYEC | H | omponent
(KBtu) | (/sf
23.8 | 8.8 | 4.6 | 4. W | 2.7 | 2.1 | | 3889.57 | | (/ft) | Ø IV | 0,1 | -, ~ | .000
.000
1680.64
140.817 | t (/sf) | L | 20.5
20.4
1.49
90
90 | 170 | 87.22 | /sf flr) | 6.38
3.76
1.77 | 3.500
8.021 | E Load = | | rque NM | | Delta Co
(MBtu) | ling .00 | o.
8- | -16.3 | -12.0 | -12.6 | -12.9 | 9 -13.25
Ø -13.41 | (DD)
(DDS) | , | • | | -7.6 | 7.7- | cept
(DD)
(DDS) | Ваѕемел | , | -6.61
-7.16
-7.51 | apt
OC | e(DDS) -1 | ation (| 9) .80
0) -3.15
9) -5.53 | .001ELF
.001ELF | Base
Typica
Residua | | Albuquerque | | | Ceil
R-0 | 7- | 7 | ٠, | i m | ω. | 4 0 | Slog | | Slab | 4- | က် မ | -10 21 | Slon | Unheated | | R-11 flr
R-19 flr
R-30 flr | Interc | N N N N N N N N N N N N N N N N N N N | + + | ഗയയാ | Slope/.8
Curve/.8 | | | | | omponent
(KBtu) | (/sf)
4.69
1.99
1.70
1.28
1.68 | . 64
 | 12.90
11.23
11.40
10.73
10.57
9.502
116.84 | € 8.0 | 2.28
2.28
2.25
2.25
2.174
129.43 | 2.06
.60
.36 | 29.39
1.840 | |------------|---------|--------------------|--|---|---|----------------------------|--|---|---| | | ig Load | Delta Co
(MBtu) | Wall
R-0
R-7 .67
R-11 -78
R-13 -89
R-17 -1.045 | -34 -1.8
lope(DD)
urve(DDS) | 4ft
8ft
8ft
Slope(DD)
Curve(DDS) | | # fir .23
fir .21
fir .21
fir .21
Intercept .28
Slope(DD) . | dow U-value 1-Pane .00 2-Pane21 3-Pane24 R-1028 | Slope(DD)
Curve(DDS)
.96 MBtu
.49 MBtu | | | oo Ling | | | 4
1 | 9000 | R-8-10 | | <u>.</u> | 17 | | | U | mponent
(KBtu) | (/sf)
11.23
4.43
3.34
2.37
2.60 | 189 | | //sf
6 | 1.54
1.65
1.942
387.86
26.304 | /sf flr)
.23
.10 | 104
.625
- Load = Load = Load = = | | Two | | elta Co
(MBtu) | -4.08
-4.08
-4.73
-5.32
-5.54 | 86.8
8.1.8
S) | -1.26
-1.24
-1.22
-1.23
-1.23
-1.28
(DD) - | ē 7. | 14 | .ion (/
.000
15
25 | Ø1ELF
Ø1ELF
Base
Typical
Residual | | Series | | ۵ | Ceil:
R-Ø
R-7
R-11
R-19
R-22
R-30 | -38
-68
-68
-68
-68 | -6 2ft
-5 2ft
-5 4ft
-10 2ft
-10 4ft
Inter
Slope
Curve | heated
Ø
11 flr | -19 fir
-30 fir
Intercept
Slope(DD)
Curve(DDS) | Infiltrat
ELF Ach
0007(.53)
0005(.38)
0003(.23) | Slope/.00 | | iding | | + _ · | 1. Ø O B 3 S \sim | ω σ ₁ ~ | ∞ ∞ ∞ ∞ ∞ | | 000040r
RR | • • • | | | type S | | omponent
(KBtu) | (/sf
18.7
18.7
18.7
18.7
18.7
18.7
18.7
18.7 | 2.1
2568.1
169.86
(/ft | . 14.44 | 14.3
3.8 | 2.15
7 1.26
7 1.08
348
2775.38 | (/sf)
65.91
20.60
12.51
2.99 | 50.894 | | t Prototyp | 70 | Delta C
(MBtu) | 0.4047.0 | -5.2
(DD)
(DDS)
sement | -5.8
-7.3
-7.5
-7.5
-7.8
-7.8
(00)
(00S) |
 | -7.3
-7.9
-7.9
-8.3
:eept
(DD)
(DDS) | . 00
. 6.52
-7.69 | (00)
(00S)
Btu
Btu | | sartment | ng Loa | _ | X X X 2 X 2 X 2 X 2 X 2 X 2 X 2 X 2 X 2 | R-34
Slop
Curv | SS 8ft
10 8ft
10 8ft
10 SC
Cury | * | -19 flr
-30 flr
-38 flr
-49 flr
Inter
Slope
Curve | ndow U-
1-Pane
2-Pane
3-Pane
R-10 | Slope
Curve
43.65 M
16.25 M
6.57 M | | MApar | Heati | | | 9
 | ααααα | 0 & & | ~ ~ ~ ~ | .*
.* | 11 11 11 | | WYEC | | omponent
(KBtu) | (/sf)
24.32
24.32
8.87
6.41
4.19
3.51 | 2.0
1.6
1.4
1.4
68.44
(/ft | | 2 4 1 | 88 .0
60 .00 | 6.42
3.77
1.77 | 3.416
8.230
8.230
1 Load | | N
O | | elta Co
(MBtu) | | 13.37
13.68
13.75
13.75
0)
0S) | -7.59
-8.19
-8.28
-8.29
-8.29
-8.40
(DD)
(DD) | Basement
-5.89
-7.46 | 7.96
8.28
8.28
7
5) - | ion
-3.66
-5.59 | 1ELF
1ELF
Bas
Typica
Residua | | lbuquerq | | ۵ | C. B. C. | | <pre></pre> | heated
0
11 fir | 19 fir
30 fir
Inter
Slope
Curve | Infiltrat
ELF Ach
0007(.69)
0005(.50)
0003(.29) | lope/.0011
urve/.0011 | | ∢ | | | | | σ , σ, σ, σ, σ, | 2 44 | | н т <i>о о о</i> | νO | | | | | | | | | • | | |-------------|---------------------|---|---|---|--------------------------
---|---|--| | | omponent
(KBtu) | (/sf)
3.62
7 1.87
5 1.62
3 1.28
2 1.11
6 .81 | 819.03
-27.136
(/ft) | 6 ↔ | (/sf)
1.92 | 2.70
2.83
3.00
3.04
3.15
3.15
3.310
426.02 | (/sf)
-2.60
-2.28
-1.51
60 | 269.92
6.492 | | Po | Delta C
(MBtu) | 2. 2 | e (DD)
e (DDS)
asement | -2.42
-2.76
-2.77
-2.85
-2.88
rcept
e(DD)
e(DDS) | 9 | 1.20
1.40
1.40
1.66
1.72
1.89
rcept
e(DD) | | oe(DD) -
oe(DDS) -
MBtu
MBtu
MBtu | | Cooling Loa | | × × × × × × × × × × × × × × × × × × × | Slope
Curve
Heated Ba | R-6
R-5
8-5
8ft
R-10 8ft
R-10 8ft
Inte
Slop | e 0 | R-11 flr
R-19 flr
R-38 flr
R-49 flr
Sloper
Curve | Window U-
1-Pane
2-Pane
3-Pane
R-10 | Slope
Curve
31.51 Mi
14.Ø1 Mi | | ŭ | Component
(KBtu) | (/sf)
(/sf)
(8.24
8.24
8.24
1.78
1.15
1.15
1.15
6 1.15
6 73 | 1664.39
-46.398
(/ft) | -15.17
-13.78
-13.78
-13.42
-11.119
-712.21
31.110 | t (/sf | 3.240
1045.97
3.40 | (/sf flr)
1.92
1.45 | 3.312
812
0ad =
 Load = | | | Delta C
(MBtu) | 0. 7. 6
1. 7
1. | pe(DD)
ve(DDS)
b | t -5.48
t -5.25
t -5.35
t -5.19
ercept
pe(DD) | Baseme | 25
.42
.85
.85
.00) - | ation
h
9) .000
5)72
1) -1.54 | .001ELF
.001ELF
Bas
Typica
Residua | | | | 7. 7. 7. 7. 7. 7. 7. 7. 7. 7. 7. 7. 7. 7 | O S C L L L L L L L L L L L L L L L L L L | R-6
R-5 2ft
R-5 4ft
R-10 2ft
R-10 4ft
Slope
Curve | nheate
-0 | R-19 fir
R-30 fir
Interca
Slope(Curve(C | Infiltre
ELF Acl
.0007(.4)
.0005(.3) | Slope/.i | | | omponent
(KBtu) | //sf)
17.13
8.20
8.20
6.92
6.92
7.40
7.35
7.35
7.56 | 3300.40
-21.403
(/ft) | 60.36
39.15
31.56
33.79
23.01
.000
.2227.25 | (/sf)
11.17 | 16 68 1 | (/sf)
76.60
33.20
20.94
6.52 | 760.08
5.353 | | ъ | Delta Co
(MBtu) | .00
-10.04
-11.47
-13.19
-14.08
-15.48 | e(DD)
e(DDS)
asement | -7.18
-10.76
-11.96
-11.59
-13.38
-13.38
rcept
e(DD) | 0.4 | -16.72
-18.82
-18.32
-19.18
(DD) 2
(DDS) 2 | .00
-8.02
-10.29 | e(DD) 2
e(DDS) 2
MBtu
MBtu
MBtu | | eating Loa | | Waa R R R R R R R R R R R R R R R R R R | Slop
Curve
Heated B | R-6
R-5
R-5
8ft
R-10 8ft
Inter
Sclope | raw!
-0
-11 fr | R-19 flr
R-30 flr
R-49 flr
Inter
Slope | Window U
1-Pane
2-Pane
3-Pane
R-10 | Slope
Curve
85.11 MI
22.04 MI
.03 MI | | H | omponent
(KBtu) | (/sf)
19.18
7.58
5.73
5.73
4.06
3.44
2.60
2.10
1.66 | 1778.18
91.553
(/ft) | 39.94
21.50
15.84
18.55
-2.355
636.71 | (/s | 46. 78 | /sf flr)
8.30
5.70
3.28 | 10.260
2.273
P Load =
 Load = | | | Delta Con
(MBtu) | .00
-17.87
-20.72
-23.28
-24.28
-25.53
-25.53
-26.31
-26.31 | (SQQ) 3 | -10.57
-13.63
-14.57
-14.12
-15.33
-15.33
(00) 3 | sеme
-7.1
14.5 | 46 | ē 4, | IELF
Base
Typica | | | | C 6 | Slope
Curve
Slab | 2ft
4ft
0 2ft
0 4ft
Inter
Slope
Curve | nheated
-0
-11 flr | 19 flr
30 flr
Inter
Slope
Curve | nfilt
LF A
607(.
605(.
603(. | Slope/.00 | | | | | | | | | | | One Story Prototype Siding WYEC Atlanta GA | | | omponent
(KBtu) | (/sf)
1.93
.34
.11 | . i i | -142.35
93.265
(/ft) | -2.14
-3.64
-3.14
-3.64
-2.64
-299.065 | (/sf) | 1.11
2.24
2.47
2.68
2.72
2.86
3.122
604.31 | (/sf)
-14.31
-11.81
-7.79 | 375.63
31.574 | | |---------------|---------|--------------------|---|---|-----------------------------|--|----------|--|--|------------------|-------------------------------------| | | | elta Co
(MBtu) | | | (DD)
(DDS)
sement | 75
81
79
81
81
(00)
(00) | | .68
.82
.94
.97
.97
.97
(DD) | | (00) -1
(00S) | כככ | | | g Load | 90 | Wa | R-19
R-27
R-34 | Slope (Curve (Curve (E | 4ft
8ft
Ø 4ft
Ø 8ft
Interce
Slope(D | - 3 | 1 fir
9 fir
Ø fir
9 fir
Slope(D
Curve(D | dow U-va | 0
0
0
0 | 1.78 MBtu
1.70 MBtu
1.79 MBtu | | | Cooling | | | | H
e
e | 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 | E | ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ | Windo | | 20
14
8 | | | ŭ | mponent
(KBtu) | (/sf)
7.50
2.62
1.84
1.13 | 0.0.4.4.4
0.0.0.0.0.0.0.0.0.0.0.0.0.0.0. | 939.79
54.904
(/ft) | - 32
- 32
- 34
- 34
- 31
- 31
- 31
- 31
- 31
- 31
- 31
- 31 | (/sf) | 3.191
008.19 | (/sf f r)
1.40
1.00
.60 | 2.688 | Load III | | Q | | ್ಗಿ | 9.00 4.00
9.00 4.00 | 6 4 4 4 4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 | (S) | 1.98
1.93
1.91
1.91
1.85
t t . | ешепt | 75
36
63
80
-1 |)
86
96 | 4 4 | Bas
(Pica | | es Two | | Delta
(MBti | . 10
0 . 10 | 9 00 00 00 V | pe(DD)
ve(DDS)
b | ve ctt | d Bas | fir | tratio
Ach
.49)
.35) | .001E | Res | | Seri | | | R-7-8 | 96646 | S S S | S 2ft
10 2ft
10 2ft
Slope
Curve | Unheated | 111 fl
119 fl
30 fl
Into
Slop | Infilt
ELF Ac
0007(
0005(| ope/
rve/ | | | ē | | | | | | ************************************** | 5 | ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ | H B 8 8 8 | S _u | | | pe Siding | | ponent
(KBtu) | (/sf)
15.75
6.97
5.72
4.37 | r.00 | 522.10
75.596
(/ft) | 57.83
31.33
24.08
26.08
17.08
525.81 | (/sf) | 16.37
1.97
.69
02
18
18
-1.751
156.78 | (/sf)
61.28
22.39
13.87
3.85 | 568.58
28.505 | | | rototype | | د
د
د | . 66
4 . 18
5 . 78 | <i>-</i> . 62 € | t 19 | .91
.26
.18
.54 | | 6 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 | | 15 | | | q | Ð | Delta
(MBti | 111 | 1 1 1 | e (DD)
e (DDS)
asemen | - 5
- 5
- 5
- 5
- 6
- 6
- 6
- 6
- 6
- 6
- 6
- 6
- 6
- 6 | | -5
-6
-6
-6
-6
-6
-6
-6
-6
-6
-6
-6
-6
-6 | | . . | MBtu
MBtu
MBtu | | Town | g Loa | | Wa - | R-19
R-27
R-34 | Slop
Curv | Aft
8 4ft
0 8ft
Intervo | <u>-</u> | OS OF TILL | ndow U
1-Pan
2-Pan
3-Pan
R-10 | $\frac{8}{2}$ | 8.46
8.75
2.61 | | ₽
※ | aatin | | | | H
ea | 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 | Cra | R - 111
R - 111
R - 130
R - 300
P - 300
P - 300 | <u>×</u> | | m | | WYEC | Ť. | (KBtu) | (/sf)
19.31
7.24
5.31
3.58 | @ 0. 8 4 0. | 1226.31
5.259
(/ft) | 29.83
13.08
18.83
10.83
5.58
-2.679
54.873 | (/sf) | 3.86
1.17
.36
16
-1.584
943.81 | (/sf flr)
6.75
4.34
2.32 | 6.292 | E Load III | | | | a Comp | 62.44 | 9.78
0.24
0.51
0.73 | S) 3 |
5.03
5.70
5.70
5.87
5.79
6.00
t | ement | 91
82
32
-1 | on .
.088
-2.89
-5.32 | ELF | Basy
ypica
sidua | | ₹ | | Delta
(MBtu | 1 ing | a no no avo | pe (00)
ve (00S)
b | 15.
t 15.
t 15.
t 16.
t 16 | d Bas | Fir -5.
Fir -6.
Fir -6.
Tire -6.
Tire -6.
Tire (DD) | # 4 6 6 6 4
- | .001E | Ren | | tlanta | | | R-11-17 | 76640 | S S S | 0 24
0 24
0 24
0 24
0 2 2 | heate | COH WALL | Infiltr
ELF Acl
00007(.71
00005(.51 | lope/
urve/ | | | ı, | | | | | a | 88888
111111
111010 | 5 | 88-11-0
-11-0 | H 9 9 9 | S | | | | Cooling Load | Delta Component
(MBtu) (KBtu) | Wall (/sf) R-Ø .00 2.32 R-748 .82 R-1155 .60 R-1361 .41 R-1964 .32 | -3468 .1
lope(DD) 175.4
urva(DDS) 47.68
d Basement (/ft | 4ft66 3.
8ft61 1.
8 4ft63 1.
9 8ft63 1.
Intercept .0
Slope(DD) 76.
Curve(DDS) .0 | Craw! (/sf) | R-0
R-11 flr .81 2.45
R-19 flr 1.00 2.76
R-30 flr 1.17 3.04
R-38 flr 1.21 3.11
R-49 flr 1.32 3.30
Intercept 3.665
Slope(DD) -852.21
Curve(DDS) 68.422 | Window U-value (/sf) 1-Pane .00 -15.64 2-Pane .33 -13.35 3-Pane .98 -8.82 R-10 1.75 -3.49 | Slope(DD) -1571.39
Curve(DDS) 37.077
18.91 MBtu
13.73 MBtu
8.19 MBtu | |---------------------------|--------------|----------------------------------|--|--|--|-------------------------|---|--|--| | ing Series Two | ŭ | Deita Component
(MBtu) (KBtu) | Ceiling (/sf) R-0 R-7 -2.80 1.84 R-11 -3.25 1.09 R-19 -3.65 .42 R-22 -3.70 .34 | -38 -3.88 .1
-60 -3.85 .1
 ope(DD) 220.6
urve(DDS) 147.91
 ab | $\cdots \cdots \omega \cdot \omega$ | Unheated Basement (/sf) | R-11 flr .45 1.84 R-19 flr .78 2.40 R-30 flr 1.00 2.76 Intercept 3.752 Slope(DD) -1362.68 Curve(DDS) 129.129 | Infiltration (/sf flr)
ELF Ach
.0007(.49) .00 1.16
.0005(.35)47 .77
.0003(.21)88 .43 | Slope/.001ELF 1.250
Curve/.001ELF .573
Base Load ≡
Typical Load ≡
Residual Load = | | MApartment Prototype Sidi | leating Load | Delta Component
(MBtu) (KBtu) | Wall (/sf) R-0 .000 15.44 R-7 -2.81 6.59 R-11 -3.21 5.33 R-13 -3.62 4.03 R-19 -3.83 3.38 R-27 -4.13 2.43 | lope(DD) 2249.3
urve(DDS) 115.68
d Basement (/ft | R-0
R-5 4ft -5.77 66.02
R-5 8ft -6.00 24.85
R-10 4ft -5.95 26.52
R-10 8ft -6.24 17.02
Intercept .000
Slope(DD) 1447.29
Curve(DDS) 3.330 | Crawl (/sf) | R-0
R-11 flr -5.34 2.34
R-19 flr -6.11 1.06
R-30 flr -6.54 .34
R-38 flr -6.54 .34
R-49 flr -6.9230
Intercept -1.371
Slope(DD) 2107.09
Curve(DDS) 68.784 |) Window U-value (/sf)
1-Pane .00 59.12
2-Pane -5.59 20.30
3-Pane -6.72 12.48
R-10 -8.04 3.28 | Slope(DD) 1313.67
Curve(DDS) 35.061
= 35.89 MBtu
= 7.62 MBtu
= 3.18 MBtu | | Atlanta GA WYEC | Ĭ | Deita Component
(MBtu) (KBtu) | Ceiting (/sf) R-0 R-1 -7.07 6.86 R-11 -8.20 4.98 R-19 -9.22 3.29 R-22 -9.53 2.76 | -39 -10.41 1.3
-60 -10.53 1.1
lope(DD) 2927.8
urve(DDS) 36.74
lab (/ft | R-Ø
R-5 2ft -6.18 19.02
R-5 4ft -6.31 14.52
R-10 2ft -6.25 16.52
R-10 4ft -6.42 11.02
Intercept 2.721
Slope(DD) 1891.96
Curve(DDS) 76.556 | Unheated Basement (/sf) | R-0
R-11 flr -6.10 1.08
R-19 flr -6.48 .44
R-30 flr -6.73 .03
Intercept -1.085
Slope(DD) 1512.54
Curve(DDS) -128.177 | Infiltration (/sf flr)
ELF Ach
.0007(.75) .00 6.47
.0005(.55) -2.88 4.07
.0003(.34) -5.23 2.11 | Slope/.001ELF 5.375
Curve/.001ELF 5.521
Base Load =
Typical Load =
Residual Load = | | | | mponent
(KBtu) | (/sf)
4.53
2.28
1.96
1.50
1.50
7.5 | 955.69
-21.088
(/ft) | 20.000000 | (/st)
4.48
4.92
4.87
4.86
4.86
4.86
4.760
160.19 | 1.4
1.6
1.0
1.1 | -51.61
4.064 | |-------------------------|--------------|----------------------------------|--|--|--|---|---|--| | | Cooling Load | Delta Co
(MBtu) | Wall
R-0
R-7 -2.53
R-11 -2.53
R-13 -3.48
R-19 -4.65
R-34 -4.65 | Slope(DD)
Curve(DDS)
Heated Basement | 91111 | Craw! R-0 R-11 flr .67 R-13 flr .68 R-38 flr .58 R-49 flr .58 Intercept .57 Curve(DDS) . | | Slope(DD)
Curve(DDS)
39.43 MBtu
18.33 MBtu
1.40 MBtu | | ing Series T≋o | ပိ | Delta Component
(MBtu) (KBtu) | Ceiling (/sf) R-Ø 8.13 R-7 -7.53 3.24 R-11 -8.73 2.46 R-19 -9.81 1.76 R-22 -10.22 1.49 R-30 -10.11 .92 R-38 -11.11 .92 R-49 -11.41 .72 | Slope(DD) 1645.37
Curve(DDS) -46.202
Slab (/ft) | 2ft -7.26 -2.
4ft -7.31 -2.
4ft -7.22 -1.
0 2ft -7.30 -2.
0 4ft -7.20 -1.
Independent of the control th | Unheated Basement (/sf) R-0 R-13 8 2.29 R-19 flr -1.19 3.71 R-30 flr40 4.22 Intercept 4.737 Slope(DD) -684.41 Curve(DDS) 40.351 | (/sf
60 2.
69 1.
18 1. | Slope/.001ELF 3.539
Curve/.001ELF .0000 =
Base Load =
Typical Load =
Residual Load = | | One Story Prototype Sid | Heating Load | Delta Component
(MBtu) (KBtu) | Wali
R-0
R-7
R-11 -9.28 5.89
R-13 -10.73 4.60
R-19 -11.67 3.96
R-37 -12.67 2.87
R-34 -13.42 2.21 | Slope(DD) 2856.59
Curve(DDS) -41.958
Heated Basement (/ft) | -6 -6.27 56.
-5 4ft -9.52 37.
-5 8ft -10.69 30.
-10 4ft -10.34 32.
-10 8ft -11.98 22.
Intercept 22.
Intercept 22.
Slope(DD) 2039.
Curve(DDS) -16.9 | Craw! (/sf) R-0 R-11 fir -13.00 10.21 R-19 fir -15.04 R-30 fir -16.1829 R-38 fir -16.4446 R-49 fir -17.1995 Intercept -2.117 Slope(DD) 2285.33 | Window U-value (/sf
1-Pane .00 60.2
2-Pane -6.14 27.0
3-Pane -7.97 17.1
R-10 -10.13 5.4 | Slope(DD) 2389.91
Curve(DDS) -1.060
= 72.55 MBtu
= 28.10 MBtu
:53 MBtu | | Birmingham AL WYEC | Í | Deita Component
(MBtu) (KBtu) | Ceiling (/sf) R-0 R-7 -14.83 6.37 R-11 -17.19 4.83 R-19 -19.32 3.45 R-22 -20.14 2.92 R-36 -22.189 1.78 R-49 -22.47 1.41 R-60 -22.84 | Slope(DD) 3220.21
Curve(DDS) -88.017
Slab (/ft) | 2ft -12.08 21.9
4ft -12.94 16.8
0 2ft -12.94 16.8
0 4ft -13.65 12.5
Intercept .00
Slope(DD) 3307.6
Curve(DDS) -15.39 | Unheated Basement (/sf) R-0 R-11 flr -13.11 1.70 R-19 flr -14.82 .59 R-30 flr -15.9212 Intercept -2.004 Slope(DD) 2534.88 | ltration (/sf f
Ach
(.69) .00 7.9
(.48) -3.77 5.5
(.30) -7.32 3.1 | Slope/.001ELF 10.097
Curve/.001ELF 1.786
Base Load =
Typical Load =
Residual Load = | | | Cooling Load | Delta Component
(MBtu) (KBtu) | Wali
R-0
R-7 .000 4.04
R-7 -1.02 1.89
R-11 -1.17 1.59
R-13 -1.33 1.25
R-19 -1.41 1.08
R-27 -1.56 .77
R-34 -1.65 .58 | Slope(DD) 749.57
Curve(DDS) .293
Heated Basement (/ft) | 4 | Crawi (/sf) | R-0
R-11 flr .44 4.98
R-19 flr .44 4.98
R-30 flr .46 5.02
R-38 flr .47 5.03
R-49 flr .49
5.06
Slope(DD) .36.99
Curve(DDS) .36.99 | Window U-value (/sf) 1-Pane .00 -6.32 2-Pane .08 -5.77 3-Pane .36 -3.82 .R-10 .69 -1.53 | Slope(DD) -692.23
Curve(DDS) 17.146
26.40 MBtu
17.95 MBtu
8.39 MBtu | |------------------------|--------------|----------------------------------|--|---|---|-------------------------|---|---|--| | ing Series Two | S | Delta Component
(MBtu) (KBtu) | Ceiling (/sf) R-0 .289 2.96 R-11 .3.35 2.19 R-19 .3.76 1.50 R-22 .3.90 1.27 R-30 .4.20 .77 R-49 .4.30 .60 R-60 .4.36 .50 | Slope(DD) 1366.30
Curve(DDS) -9.528
Slab (/ft) | R-Ø -2.79 -5.99 R-5 2ft -2.80 -6.24 R-5 4ft -2.77 -5.49 R-10 2ft -2.80 -6.24 R-10 4ft -2.73 -4.49 Intercept .000 Slope(DD) -1485.10 Curve(DDS) 80.605 | Unheated Basement (/sf) | R-0
R-11 flr40 3.58
R-19 flr21 3.91
R-30 flr08 4.12
Intercept 4.661
Slope(DD) -729.77
Curve(DDS) 49.386 | Infiltration (/sf flr)
ELF Ach
.0007(.41) .00 2.03
.0005(.29)72 1.43
.0003(.18) -1.42 .84 | Slope/.001ELF 2.750
Curve/.001ELF .208
Base Load =
Typical Load =
Residual Load = | | Mid Town Prototype Sid | eating Load | Deita Component
(MBtu) (KBtu) | Wall
R-0
R-7
R-11 -4.10 4.72
R-13 -4.65 3.56
R-19 -4.33 2.98
R-27 -5.32 2.98
R-34 -5.56 1.66 | Slope(DD) 2024.77
Curve(DDS) 84.304
Heated Basement (/ft) | R-0 -3.51 49.45 R-5 4ft -4.47 25.45 R-6 8ft -4.70 19.70 R-10 4ft -4.65 20.95 R-10 8ft -4.92 14.20 Intercept 2.070 Slope(DD) 1025.00 Curve(DDS) 2.868 | Craw! (/sf) | R-0
R-11 flr -4.52 1.61
R-19 flr -5.16 .55
R-3 flr -5.46 .04
R-49 flr -5.7307
Intercept -1.243
Slope(DD) 1537.74
Curve(DDS) 95.247 | Window U-value (/sf) 1-Pane .00 45.46 2-Pane -4.32 15.46 3-Pane -5.18 9.50 R-10 -6.19 2.48 | Slope(DD) 987.83
Curve(DDS) 27.813
33.01 MBtu
12.84 MBtu
3.87 MBtu | | Birmingham AL WYEC | ⊕
H | Delta Component
(MBtu) (KBtu) | Ceiling (/sf) R-0 .00 16.99 R-7 -6.38 6.36 R-11 -7.40 4.67 R-19 -8.31 3.14 R-22 -8.61 2.64 R-30 -9.02 1.97 R-38 -9.26 1.56 R-49 -9.44 1.25 R-60 -9.56 1.06 | Slope(DD) 2825.01
Curve(DDS) 6.912
Slab (/ft) | R-0 -4.46 25.70
R-5 2ft -5.06 10.70
R-5 4ft -5.20 7.20
R-10 2ft -5.14 8.70
R-10 4ft -5.29 4.95
Intercept .000
Slope(DD) 918.22
Curve(DDS) 91.674 | Unheated Basement (/sf) | R-0 -3.51 3.30 R-11 flr -4.93 .93 R-19 flr -5.34 .25 R-30 flr -5.6019 Intercept -1.368 Slope(DD) 1608.53 Curve(DDS) -136.293 | Infiltration (/sf flr) ELF Ach .0007(.68) .00 5.65 .0005(.49) -2.70 3.40 .0003(.28) -4.79 1.66 | Slope/.001ELF 3.625
Curve/.001ELF 6.354
Base Load =
Typical Load =
Residual Load = | | | WBtu) | /sf)
3.86
1.65
1.34
.99
.82
.60 | 62.96
6.687
(/ft) | 33.65
29.82
29.98
29.15
29.15
28.15
72.67 | (/sf) | 6 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 | /sf)
5.02
4.85
3.22
1.30 | .161 | |---|----------------------------------|---|--|---|----------------------------|---|--|--| | ing Load | Delta Comp
(MBtu) (| Wali
R-0
R-7
R-1168
R-1389
R-1994
R-27 - 1.01
R-34 - 1.05 | Slope(DD) 5
Curve(DDS) 2
ated Basement | -0 -1.03
-5 4ft -1.15
-5 8ft -1.14
-10 4ft -1.17
-10 8ft -1.20
Slope(DD) 1
Curve(DDS) | _ ** | 11 flr .54
19 flr .55
30 flr .56
49 flr .57
49 flr .57
Slope(DD) 7
Curve(DDS) -48 | 1-Pane .000 - 2-Pane .02 - 3-Pane .26 - R-10 .54 - | Slope(DD) -59
Curve(DDS) 15
24.49 MBtu
16.98 MBtu
7.54 MBtu | | Series T⊮o
Coolin | Delta Component
(MBtu) (KBtu) | Ceiling (/sf) R-0 .00 7.78 R-7 -2.92 2.91 R-11 -3.39 2.13 R-19 -3.81 1.43 R-22 -3.94 1.20 R-38 -4.13 .90 R-38 -4.24 .71 R-49 -4.32 .57 R-60 -4.38 .48 | Slope(DD) 1287.99
Curve(DDS) 3.968
Slab (/ft) He | R-6 -2.22 -6.02 R-8-5 4ft -2.24 -6.68 R-10 2ft -2.24 -6.58 R-10 2ft -2.24 -6.52 R-10 4ft -2.19 -4.85 R-10 4ft -2.19 -4.85 R-10 e(DD) -1545.17 Curve(DDS) 85.123 | Unheated Basement (/sf) Cr | R-0 1.68 R-11 flr31 2.88 R-19 flr12 3.20 R-19 flr00 3.41 R-30 flr00 3.41 R-10 flrercept 3.955 Slope(DD) -742.03 Curve(DDS) 58.274 | Infiltration (/sf flr) Wil
ELF Ach
.0007(.41) .00 2.01
.0005(.29)69 1.44
.0003(.18) -1.38 .86 | Slope/.001ELF 2.875 Curve/.001ELF .000 Base Load = Typical Load = Residual Load = | | MApartment Prototype Siding
Heating Load | Delta Component
(MBtu) (KBtu) | Wall
R-0
R-7
R-11
R-11
R-13
R-13
R-13
R-13
R-27
R-27
R-37
R-37
R-37
R-37
R-37
R-37
R-37
R-3 | Slope(DD) 1794.88
Curve(DDS) 121.914
Heated Basement (/ft) | R-0
R-5 4ft -5.16 23.96
R-5 8ft -5.38 16.96
R-10 4ft -5.34 18.12
R-10 8ft -5.57 10.46
Intercept -3.355
Slope(DD) 1128.12
Curve(DDS) 6.268 | Crawl (/sf) | R-0 .00 9.81 R-11 flr -4.82 1.77 R-19 flr -5.50 .64 R-30 flr -5.83 .09 R-38 flr -5.9004 R-49 flr -6.1240 Intercept -1.296 Slope(DD) 1661.81 Curve(DDS) 98.167 | Window U-value (/sf)
1-Pane .00 44.71
2-Pane -4.43 13.98
3-Pane -5.22 8.49
R-10 -6.15 2.03 | Slope(DD) 782.91
Curve(DDS) 34.488
31.25 MBtu
11.74 MBtu
4.26 MBtu | | Birmingham AL WYEC M | Delta Component
(MBtu) (KBtu) | Ceiling (/sf) R-0 R-7 -6.58 6.23 R-11 -7.64 4.48 R-19 -8.58 2.90 R-22 -9.57 R-30 -9.49 1.14 R-49 -9.74 .98 | Slope(DD) 2544.62
Curve(DDS) 60.234
Slab .(/ft) | R-0
R-5 2ft -5.48 13.46
R-5 4ft -5.59 9.62
R-10 2ft -5.54 11.29
R-10 4ft -5.68 6.62
Intercept .0000
Slope(DD) 1415.64
Curve(DDS) 80.199 | Unheated Basement (/sf) | R-0
R-11 flr -5.43 .76
R-19 flr -5.78 .17
R-30 flr -6.0121
Intercept -1.242
Slope(DD) 1408.53
Curve(DDS) -124.548 | Infiltration (/sf flr)
ELF Ach
.0007(.68) .00 5.32
.0005(.47) -2.68 3.09
.0003(.28) -4.67 1.43 | Slope/.001ELF 2.645
Curve/.001ELF 7.084
Base Load = Typical Load = Residual Load = | | | | omponent
(KBtu) | (/sf)
2.16
1.12
.98
.74 | 483.3
15.20 | (/ft)
3.41
1.06
1.06
1.000
.46
.46
.900
19.50 | (/sf)
2.32
2.69
2.72
2.78
2.81
2.81 | 9 • • • | 109.61
838 | |--|--------------|---------------------------|---|---|---|---|--|--| | | | elta (
(MBtu) |
.00
-1.16
-1.33
-1.59 | . co co | -3.80
-3.80
-3.40
-3.40
-3.50
cept
(DD)
(DD) | .63
.63
.72
.72 | 1 2 2 3 3 8 9 9 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | MBtu
MBtu
MBtu
MBtu
MBtu | | | Cooling Load | ۵ | Waa - 1
R - 0
R - 7
R - 11
R - 113
R - 119 | | Heated Ba
R-6
R-5
4ft
R-10 4ft
R-10 8ft
Inter
Slope
Curve | Craw
R-0
R-11 f-
R-30 f-r
R-38 f-r
R-48 f-r | Window U-value 1-Pane 2-Pane 3-Pane R-10 | Slope
Curve
14.48 MB
2.98 MB
-2.91 MB | | | ŭ | omponent
(KBtu) | (/sf)
4.35
1.75
1.33
.96 | 897.7-27.58 | (/ft) -3.40 -2.43 -1.89 -2.25 -1.41 -669.17 | . (/sf)
.37
1.48
1.84
2.07
2.698 | /sf f / 2.42 / 2.42 / 3 | . 325
. 406
. 6 Load =
 Load =
 Load = | | | | Delta Co
(MBtu) | 4400 | $\omega \omega \omega =$ | -4.13
-3.97
-3.88
-3.94
-3.86
(DD)
(DDS) | Basement
-3.00
-1.28
73
38
cept | 6
7
7
7
8 | .001ELF
.001ELF
Base
Typical
Residual | | | • | | | 1 1 1 1 - 2 .
2 8 8 8 8 9 6 7 . | Slab
R-6 2ft
R-5 2ft
R-10 2ft
R-10 4ft
Inter-
Slope
Curve | Unheated Basen R-0 -3. R-11 flr -1. R-19 flr R-30 flr Intercept | Infiltra
ELF Ach
.0007(.68)
.0005(.49) | Slope/.0 | | | | a Component
tu) (KBtu) | (/sf)
46.98
23.26
19.88
15.70 | 9.8
7.4
7.4
9802.2
198.54 | (/f
151.
101.
84.
88.
61.
61. | (/sf)
27.27
.04
-4.68
-7.73
-10.43
-14.994 | 28.78
(/sf
(/sf
(/sf
226.2
109.6
69.8
23.0 | 931.18 | | | 70 | Delta Co
(MBtu) | .00
-26.65
-30.45
-35.15 | -41.76
-44.39
(DD) - | sement
-16.90
-25.13
-28.05
-27.27
-31.82
(00)
(00S) | -41.93
-49.20
-53.90
-54.97
-58.06
(DD) | DDS) -
alue
.000
-21.54
-28.89 | e(DD) 9
e(DDS) -
MBtu
MBtu | | | Heating Load | _ | Wa | R-27
R-34
Slop
Curv | 8 000044 | Craw! R-6 R-11 flr R-19 flr R-30 flr R-40 flr R-40 flr R-40 flr | w | Slope
Curve
260.49 MB
94.28 MB
14.27 MB | | | H. | omponent
(KBtu) | 7.65
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.0 | 7.
5.
3.
30196. | (/f
69.
23.
10.
15.
15.
-45.8
3282.
257.1 | 16.36
1.15
-3.18
-5.96
-13.486
6241.98 | 64.68
/sf f
31.8
22.6
13.5 | 44.805
. 893
. Load = 1. Load = 1. | | | | elta C
(MBt∪) | . 000
- 45.95
- 53.29
- 59.88
- 62.44 | -65.8
-67.9
-69.8
-71.0
(DD)
(DDS) | -30.45
-38.03
-48.32
-39.47
-42.71
cept
(DD) 1 | -16.98
-16.98
-46.89
-51.18
-61.18 | on
.ØØ
.14.13
28.15 | Bas
Typica
Residua | | | | ۵ | Ce: | | Slab 2ft 2ft 8 2ft 9 4ft Slope Curve | Unheated PR-0 . R-11 flr R-19 flr R-30 flr Slope | urve
 tra
 Ach
 .89
 .38 | Slope/.001
Curve/.001 | | | | | | | | | | | One Story Prototype Siding Series Two WYEC Bismarck ND | | | component
(KBtu) | (/sf)
2.35
1.138
1.15
.98
.77
.58 | 599.93
30.424
(/ft) | 1.82
.07
.32
43
18
866
2.186 | (/sf) | 1.90
2.46
2.52
2.52
2.54
2.54
2.54
2.58
2.68
3.67
464 | .58
85
05
05 | -25.05
1.775 | |-----------|-------------|---------------------|---|-------------------------------|---|----------|---|--|---| | | 70 | Delta Com
(MBtu) | 00.
00.
00.
00.
00.
00.
00. | e(DD)
e(DDS) -
asement | -1.07
-1.14
-1.13
-1.16
-1.15
rcept
e(DD) | | .88
.38
.37
.37
.38
.38
.6(DD) | -value
6 69
6 69
1 . 69 | e (DD)
e (DDS)
MBtu
MBtu
MBtu | | | ooling Load | | X X X X X X X X X X X X X X X X X X X | Slop
Curv
Heated B | R-6
R-5 4ft
R-5 8ft
R-10 4ft
R-10 8ft
Inte
Slop
Curv | Crawi | R-0
R-11
R-130
F-30 f-1
A-30 f-1
Cury | Window U. 1-Pan 2-Pan 3-Pan R-10 | S-0
Curv
9.87
5.42
1.68 | | | Š | omponent
(KBtu) | (/sf)
4.37
1.33
1.33
1.33
.95
.81
.62
.39 | 890.41
.25.945
(/ft) | -11.18
-9.18
-8.18
-8.68
-7.18
-3.572
56.216 | : (/sf) | 1.12
1.17
1.50
1.70
2.276
-781.34
70.437 | (/sf flr)
.51
.39 | 208
208
208
208
208 | | Two | | Delta Com
(MBtu) | ing
1.1.60
1.1.82
1.2.182
1.2.214
1.2.32
1.3.32
1.3.32
1.3.32 | e(DD)
e(DDS) - | -1.59
-1.47
-1.49
-1.49
-1.43
-1.43
-(DD) -1 | Basement | -1.07
25
25
12
005) | ation
3) .000
9)15 | .001ELF
.001ELF
Base
Typica
Residua | | Series | | | C | S Curve | R-6
R-5 2ft
R-5 4ft
R-10 2ft
R-10 4ft
Inte
Slop
Curv | Unheated | R-0
R-11 flr
R-19 flr
R-3Ø flr
Interce
Slope([
Curve([| Infiltra
ELF Act
.0007(.68
.0005(.48) | Slope/. | | Siding | | ent
3tu) | /sf)
6.66
2.56
4.96
7.98
7.98 | 4.23
.550
/ft) | 6.00
6.00
6.00
6.00
6.00
6.00
6.00
6.00 | /sf) | 9.73
3.83
3.83
6.67
6.63
8.66
8.66 | /sf)
3.11
7.97
2.13
9.99 | 8.58
.666 | | type | | ompon
(KB | Ø80876
~401111 | 919,
-98,
t (, | 1 18
6 11
9 6
9 6
715
-59 | > | 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 | 600 21
58 9
74 6
81 1 | 853
-17 | | Prototy | | elta C
(MBtu) | 0.11.
6.11.
7.15.
7.7.
8.81. | (DD)
(DDS)
Semen | -10.3
-13.10
-14.00
-13.8
-15.00
(DD) | | -15.
-18.
-19.
-20.
-21.
(00)
(00) | value
-16:
-21: | e (DD)
e (DDS)
MBtu
MBtu
MBtu | | Town | g Load | Õ | W X X X X X X X X X X X X X X X X X X X | Slope
Curve | Aft
Bft
B Aft
Inter
Slope
Curve | - | OB TILL
OB TILL
OB TILL
SCOPE
CUTVE | ndow U-
1-Pane
2-Pane
3-Pane
R-10 | Slop
Curv
8.76
4.23
3.51 | | ₽
∑ | eating | | | T
e
a | *****
 | Cra | ************************************** | r) Win | 1111 | | WYEC | Ĭ | omponent
(KBtu) | (/sf)
52.417
20.117
10.82
10.82
9.15
6.92
6.57
7.40
9.64 | .0013.88
.204.826
(/ft) | 7 74.13
7 26.63
2 12.88
2 17.88
787
-39.816
12186.66 | nt (/sf) | 1 12.54
3154
327
0 -2.27
-8.185
8141.35
-799.405 | (/sf flr
Ø 3Ø.06
8 21.07
8 12.41 | 40.167
3.958
ase Load
cal Load
ual Load | | 9 | | elta Co
(MBtu) | 9 .00
-19.04
-22.08
-22.81
-25.81
-27.15
-27.96
-28.67 | (00) 1
(00S) - | -14.87
-16.77
-17.32
-17.12
-17.16
(DD) 1 | Ваѕетег | -16.3
-15.9
-17.9
-19.2
-19.2
(DD) | ion
.8
-16.7
-21.1 | ELF
ELF
Typ: | | ismarck N | | ۵ | Ceilin
R-6
R-7
R-11
R-19
R-22
R-38
R-49 | Slope
Curve
Slab | 2ft
4ft
2ft
1nter
Slope
Curve | ated | fir
fir
fir
Slope
Curve | nfiltrat
LF Ach
1007(.89)
1005(.65) | ope/.0016 | | B. sm | | | | | R 5
R 5
R 16
R - 16 | Unhe | R-6
R-11
R-19
R-30 | 1 | S | | Cooling Load | Delta Component
(MBtu) (KBtu) | Wall (/sf) R-0 .000 2.14 R-732 1.13 R-1137 .98 R-1344 .75 R-2752 .39 R-3455 .39 | Slope(DD) 493.41
Curve(DDS) -17.864
Heated Basement (/ft) | R-Ø92 .87
R-5 4ft9763
R-5 8ft9763
R-1Ø 4ft9897
R-1Ø 8ft9763
Intercept .000
Slope(DD) -94.77
Curve(DDS) 3.003 | Crawl (/sf) | R-0 1.58 R-11 flr .28 2.04 R-19 flr .29 2.06 R-30 flr .32 2.11 R-38 flr .35 2.11 R-49 flr .35 2.16 Intercept 2.177 Slope(DD) -78.23 Curve(DDS) -7.546 | Window U-value (/sf)
1-Pane .00 .08 2-Pane0958 3-Pane0740 R-100419 | Slope(DD) -90.87
Curve(DDS) 3.562
8.43 MBtu
4.42 MBtu
1.05 MBtu | |--------------|----------------------------------|--|--|--|-------------------------|--|---|---| | Ö | Deita Component
(MBtu) (KBtu) | Ceiling (/sf) R-0 .000 4.33 R-7 -1.57 1.72 R-11 -1.82 1.30 R-12 -2.05 .93 R-22 -2.13 .79 R-30 -2.24 .60 R-38 -2.31 .48 R-49 -2.37 .38 R-60 -2.42 .31 | Slope(DD) 863.84
Curve(DDS) -22.395
Slab (/ft) | R-6 -1.14 -6.63
R-5 2ft -1.09 -4.97
R-5 4ft -1.06 -3.80
R-10 2ft -1.08 -4.47
R-10 4ft -1.04 -3.13
Intercept .195
Slope(DD) -1129.15
Curve(DDS) 46.225 | Unheated Basement (/sf) | R-0
R-11 flr92 .04
R-19 flr30 1.08
R-30 flr20 1.25
Intercept 1.723
Slope(DD) -647.56
Curve(DDS) 62.424 | Infiltration (/sf flr) ELF Ach .0007(.68) .00 .44 .0005(.49)16 .31 .0003(.29)32 .18 | Slope/.001ELF .562
Curve/.001ELF .104
Base Load = Typicaf Load = Residual Load = | | ating Load | Delta Component
(MBtu) (KBtu) | Wali
R-0
R-7
R-11 -8.95 18.74
R-13 -10.25 14.65
R-19 -10.89 15.72
R-34 -12.70 6.89 | Slope(DD) 8891.27
Curve(DDS) -29.383
Heated Basement (/ft) | R-0
R-5 4ft -14.98 133.54
R-5 8ft -15.72 108.87
R-10 4ft -15.58 113.71
R-10 8ft -16.65 77.87
Intercept .000
Slope(DD) 8071.34
Curve(DDS) -62.726 | Crawl (/sf) | R-0
R-11 flr -15.80 5.32
R-19 flr -18.53 .77
R-30 flr -20.66 -2.12
R-49 flr -21.80 -4.68
Intercept -9.054
Slope(DD) 8961.55
Curve(DDS) -199.906 | WindowwU-
1-Pane
2-Pane
3-Pane
R-10 | Slope(DD) 8407.35
Curve(DDS) -11.238
121.82 MBtu
41.03 MBtu
3.77 MBtu | | Н | Delta Component
(MBtu) (KBtu) | Ceiling (/sf) R-0 .00 50.86 R-7 -18 63 19.81 R-11 -21.60 14.85 R-19 -24.28 10.40 R-30 -26.54 8.73 R-38 -27.32 5.32 R-49 -27.39 4.22 R-60 -28.42 3.50 | Slope(DD) 9590.92
Curve(DDS) -170.816
Slab (/ft) | R-0 -16.10 96.21
R-5 2ft -17.61 45.87
R-5 4ft -18.06 31.04
R-10 2ft -17.89 36.71
R-10 4ft -18.51 16.04
Intercept -27.017
Slope(DD) 13593.62 | Unheated Basement (/sf) | R-0
R-11 flr -16.91 3.47
R-19 flr -18.64 .57
R-3Ø flr -19.76 -1.29
Intercept -6.548
Slope(DD) 7275.23
Curve(DDS) -752.608 | Infiltration (/sf flr)
ELF Ach
.0007(.89) .00 29.73
.0005(.65)-10.78 20.74
.0003(.40)-21.09 12.15 | Slope/.001ELF 39.041
Curve/.001ELF 4.896
Base Load = Typical Load = Residual Load = | MApartment Prototype Siding WYEC Bismarck ND | | | mponent
(KBtu) | (/sf)
3.1f)
1.67
1.46
1.13
72
72 | 738.23
-27.742
(/ft) | 8.1.1.38.3.2.2.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3. | 2 . 23
2 . 23
2 . 45
2 . 44
2 . 398
2 . 398
7 . 84 | (/sf)
4.54
2.43
1.56 | 234.85
-2.377 | |----------|--------------|--------------------|---|---|--|---|--|--| | | ס | Delta Co
(MBtu) | | e(DD)
e(DDS)
asement | -2.82
-3.22
-3.23
-3.32
-3.34
copt
e(DD) | .00
.36
.34
.32
.32
.32
.32
.00) | value
 | e (DDS)
e (DDS)
MBtu
MBtu
MBtu | | | Cooling Load | _ | W W B B B B B B B B B B B B B B B B B B | Slope
Curve
Heated Ba | -6
-5 4ft
-16 8ft
-10 8ft
Slop
Curv | Craw! R-0 R-11 flr R-19 flr R-30 flr R-49 flr R-49 flr R-40 flr Curve | Window U-
1-Pane
2-Pane
3-Pane
R-10 | Slope
Curve
20.80 M
5.46 M | | | Coo | ponent
(KBtu) | (/sf)
6.65
2.67
2.04
1.47
1.25
77
.60 | 377.36
43.127
(/ft) 1 | 7. 4. 4. 4. 4. 4. 4. 4. 4. 4. 4. 4. 4. 4. | 7 (st) ((st) () () () () () () () () () | sf flr)
.48
.35 | .747
081
e Load =
 Load = | | 7¥0 | | elta Com
(MBtu) | . 60
-6.12
-7.10
-7.10
-7.98
-8.32
-8.78
-9.06
-9.32 | (00) 1
(00s) - | -4.33
-4.08
-4.14
-4.14
-4.02
-60pt
(DD) - | 3a sement
-2.82
-1.33
89
60
(DD) - | tion (/
) .000
)20
)41 | Ø BELF
Ø BELF
Ppical
Typical
Residual | | Series | | ٩ | 7 - 7 - 7 - 7 - 7 - 7 - 7 - 7 - 7 - 7 - | Slope
Curve
Slab | SI 4 2 4 5 4 5 6 7 6 7 6 7 6 7 6 7 7 9 9 9 9 9 9 9 9 9 | Unheated b
R-0
R-11 flr
R-19 flr
R-30 flr
Interc
Sloped | Infiltra
ELF Ach
.0007(.56
.0005(.40
.0003(.24 | Slope/.Ø
Curve/.Ø | | Siding | | ent
tu) | 95)
100
100
100
100
100
100
100
100
100
10 | 38
96
t) | | if)
71
25
36
36
36
77
77
80
87 | if)
70
53
94
02 | 87
56 | | type | | ompon
(KB | (/s
300
300
300
11
11
11
11
10
10
10
10
10
10
10
10
1 | 6311.
-105.0 | 2 102
2 688
2 59
2 59
8 40
4 40
3 - 45. | (/s
2 17.
2 17.
2 17.
5 14.
5 14.
5 15.
6 15.
9 15. | (/s
0 142.
9 67.
3 42.
8 14. | 6013.
-23.0 | | Prototyp | 70 | Delta C.
(MBtu) | 24.88.32
29.76
20.76
20.76
20.76 | e (DD)
e (DDS)
asement | -18.9
-15.9
-17.9
-17.4
-28.4
(DD) | -28.4
-38.9
-33.6
-34.3
-36.1
-36.1
(DD) | value
. 0
-13.8
-18.4
-23.7 | (DD)
(DDS)
(Btu
(Btu | | 5 | à | - | | | | ∟ o o | ί σοσ | 00 333 | | Sto | ing L | | ¥ | Slop
Curv
eated B | 11120 | | indow U-
1-Pane
2-Pane
3-Pane
R-10 | Slope
Curve
156.15 ME
49.29 ME
6.68 ME | | One Sto | ng L | nent
Btu) | 2.8f) 2.8f) 3.13 3.13 8.7 7.15 8.15 8.14 8.29 8.31 8.31 8.31 8.31 8.31 | 7.88 Slop
.322 Curv
/ft) Heated B | 4.75 R-6
3.36 R-5 4ft
4.27 R-5 8ft
7.52 R-10 4ft
5.05 R-10 8ft
3.46 S-10 8ft | /sf) Crawl 1.07 R-0 1.34 R-11 flr 1.34 R-19 flr 3.07 R-30 flr R-30 flr R-49 flr 697 Slope 8.91 Slope | fir) Window U-
21 1-Pane
46 2-Pane
80 3-Pane
R-10 | .384 Slope
.218 Curve
Load = 156.15 W
Load = 49.29 W
Load = 6.68 W | | Sto | eating L | omponen
(KBtu | (/sf) Wal
32.86 R-0
37 13.13 R-7
22 9.98 R-1
58 7.15 R-1
26 6.06 R-2
10 2.92 R-3
10 2.92 R-3 | 6687.88 Slop
-193.322 Curv
(/ft) Heated B | 18 54.75 R-Ø
39 23.36 R-5 4ft
9Ø 14.27 R-5 8ft
36 17.52 R-1Ø 4ft
43 5.05 R-1Ø 8ft
-20.883 Inte
853.45 Slope
-155.085 Curv | 22 11.07 R-0
22 13.4 R-11 flr
33 -1.34 R-19 flr
99 -3.07 R-38 flr
R-38 flr
R-38 flr
R-49 flr
-7.697 Slope
-512.712 Curve | (/sf flr) Window U-
.00 16.21 1-Pane
.32 11.46 2-Pane
.49 6.80 3-Pane
R-10 | 1.218 Slope
1.218 Curve
b Load = 156.15 W
 Load = 49.29 W
 Load = 6.68 W | | One Sto | eating L | onen
KBtu | (/sf) Wal
32.86 R-9
37 13.13 R-7
22 9.98 R-1
58 7.15 R-1
56 6.06 R-2
88 3.71 R-3
88 2.41 | 6687.88 Slop
193.322 Curv
(/ft) Heated B | -18.18 54.75 R-0
-23.39 23.36 R-5 4ft
-24.90 14.27 R-5 8ft
-24.36 17.52 R-10 4ft
-26.43 5.05 R-10 8ft
rcept -20.883 Inte
B(DD) 853.45 Slop
e(DDS) -155.085 Curv | 22 11.07 R-0
22 11.07 R-11 flr
33 -1.34 R-11 flr
99 -3.07 R-30 flr
R-38 flr
R-38 flr
R-49 flr
-7.697 Slope
-512.712 Curve | (/sf flr) Window U-
0 16.21 1-Pane
2 11.46 2-Pane
9 6.80 3-Pane
R-10 | 2.304 Slope
1.218 Curve
Load = 156.15 W
Load = 49.29 W
Load = 6.68 W | | | • | | | | | | | | |--------------|---------------------|---|------------------------------|---|----------|---|--|---| | | Component
(KBtu) | (/sf)
3.49
1.86
1.62
1.24
1.06
64 | 817.95
-31.359
(/ft) | 2.15
10
60
35
-68.57 | (/sf) | 1.81
2.14
2.14
2.14
2.14
2.095
80.27
26.498 | (/sf)
2.45
1.14
.72
.23 | 99.38 | | | elta (
(MBtu) | .00
78
89
-1.07
-1.16
-1.28 | (DD)
(DDS) -
sement | -1.00
-1.09
-1.09
-1.11
-1.11
(OD)
(DD) | | .00
.21
.20
.20
.20
.20
.20
(00)
(00)
(00S) | value
00
19
25 | (DD) (e (DDS) MBtu MBtu MBtu | | Cooling Load | ۵ | M R R B B B B B B B B B B B B B B B B B | Slope
Curve
Heated Bas | R-6
4ft
R-5 4ft
R-10 4ft
R-10 8ft
Inter-
Slope
Curve | Crawl | R-11 flr
R-19 flr
R-30 flr
R-38 flr
R-49 flr
R-49 flr
Slopel | Window
U-v
1-Pane
2-Pane
3-Pane
R-10 | Slope
Curve
13.28 Mf
7.13 Mf
1.90 Mf | | Coo | Component
(KBtu) | (/sf)
6.75
2.75
2.11
1.54
1.30
.99
.63 | 449.07
52.284
(/ft) I | -13.85
-12.35
-11.63
-12.10
-10.85
-8.145
975.75 | (/sf) (| .14
1.04
1.34
1.53
2.049
16.49 | sf flr)
.30
.18
.09 | | | | elta (
(MBtu) | -2.40
-2.79
-3.13
-3.27
-3.57
-3.67
-3.67 | (00) 1
(008) - | -1.64
-1.58
-1.55
-1.57
-1.57
(00) - | Basement | -1.00
46
28
17
17
(00)
(DDS) 6 | tion (/
00
14
)15 | Ø1ELF
Ø1ELF
Base
Typical
Residual | | | ۵ | Ce i | Slope
Curve
Slab | R-0
R-5 2ft
R-5 4ft
R-10 2ft
R-10 4ft
Inter
Slope
Curve | Unheated | R-0
R-11 flr
R-19 flr
R-3Ø flr
Intercept
Slope(DD)
Curve(DDS) | Infiltrat
ELF Ach
.0007(.56)
.0005(.40)
.0003(.24) | Slope/.0011
Curve/.0011 | | | Component
(KBtu) | (/sf)
29.62
13.82
11.57
8.96
7.67
5.54 | 389.99
21.901
(/ft) | 117.25
69.50
56.25
58.75
40.00
.000
145.31 | (/sf) | 18.13
2.33
2.33
1.04
1.04
1.33
1.34
1.33
1.34
1.35
1.33
1.34
1.35
1.35
1.35
1.35
1.35
1.35
1.35
1.35 | (/sf)
123.05
52.70
33.20
10.27 | 336,90
12,270 | | | elta (
(MBtu) | -7.53
-8.60
-9.84
-10.46
-11.48 | (DD) 5
(DDS)
sement | -6.19
-8.10
-8.63
-8.53
-9.28
(DD)
4 | | .00
-9.50
-11.10
-12.04
-12.26
-12.88
cept
(DD) 4 | . 00 : -10.13 -12.94 -16.24 | oe(DD) 43
oe(DDS) 1
MBtu
MBtu
MBtu | | ating Load | ۵ | X X X X X X X X X X X X X X X X X X X | Slope
Curve
Heated Bas | R-6
R-5 4ft
R-5 8ft
R-10 4ft
R-10 8ft
Slope
Curve | Crawl | R-11 flr
R-13 flr
R-30 flr
R-38 flr
R-49 flr
R-49 flr
Slope | Window U-
1-Pane
2-Pane
3-Pane
R-10 | Stope
Curve
72.83 MI
20.24 MI
4.71 Mi | | Неа | oonent
(KBtu) | (/sf)
34.15
13.16
9.81
6.80
5.74
4.32
2.75 | 233.86
79.941
(/ft) H | 50.75
19.50
11.50
14.25
3.50
17.474
646.82 | (/sf) (| 7.82
1.95
01
-1.27
4.752
88.31
5.800 | sf flr)
13.90
9.32
5.23 | 5.624
6.042
Load = Load = Load = Load | | | (MBtu) | | - (\$00)
9 (00) | -8.85
-10.10
-10.42
-10.31
-10.74
-10.74
(DD) 6
(DD) 6 | Basement | -6.19
-9.71
-10.88
-11.64
-11.64
(DD) 47
(DDS) -45 | tion (/
.000
) -5.49
)-10.40 | ØJELF
ØJELF
Base
Typical
Residual | | | ۵ | C 8 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 | Slope
Curve
Slab | R-6
R-5
2ft
R-5 4ft
R-10 2ft
R-10 4ft
Inter
Slope
Curve | Unheated | R-0
R-11 flr
R-19 flr
R-30 flr
Inter
Slope
Curve | Infiltra
ELF Ach
.0007(.78
.0005(.58 | Slope/.ø
Curve/.ø | WYEC Mid Town Prototype Siding Boise ID | | ponent
(KBtu) | (/sf)
3.26
1.74
1.53
1.20
1.04
.77 | 786.42
33.407
(/ft) | 2.06
.39
.56
11
.000
-10.65 | (/sf) | 1.61
1.93
1.93
1.87
1.85
1.788
1.788
1.43.43 | 3.17
1.54
.98 | 139.56 | | |---------------------------|--------------------|--|------------------------------------|---|----------|---|---|---|-------------| | | elta Com
(MBtu) | | (DD)
(DDS) -
sement | 91
95
95
97
96
96
(DD)
(DD) | | .000
.18
.18
.16
.15
.15
.15
.15
.10
.10
.10
.10 | value
 | e(DD)
e(DDS)
MBtu
MBtu
MBtu | | | Cooling Load | Õ | ************************************** | Slope
Curve
Heated Ba | R-6
8-5 4ft
R-5 8ft
R-10 4ft
R-10 8ft
Inter-
Slope | Crawl | R-0
R-11 flr
R-19 flr
R-30 flr
R-49 flr
R-49 flr
Slope
Curve | Window U-1
1-Pane
2-Pane
3-Pane
R-10 | S-0000
Curve
11.51 MS
5.88 MS
65 MS | , | | Coo | ponent
(KBtu) | (/sf)
6.77
6.77
1.54
1.54
1.99
80
.63 | 451.64
52.111
(/ft) | -8.44
-7.11
-6.28
-6.78
-5.61
-5.61
973.60 | (/sf) | .10
.83
1.07
1.22
1.643
581.30
54.791 | /sf flr)
.40
.27
.15 | 6 - 158
158
158
158
111 | | | o *
* | (MBtu) (A | 00
2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - | (DD) 1
(DDS) - | -1.22
-1.18
-1.16
-1.17
-1.17
e(DD) - | Basement | fir47
fir33
fir23
fir23
cure(DD) | ation (h .000 (6) .000 (9)16 (4)30 | .001ELF
.001ELF
Typica
Residua |)
)
) | | Series | Δ | R R R R R R R R R R R R R R R R R R R | Slope
Curve
Slab | R-6
R-5 2ft
R-5 4ft
R-10 2ft
R-10 4ft
Slope
Curve | Unheated | R-10
R-10
R-10
R-30
Flr
Inter
Slope
Curve | Infiltrat
ELF .0007(.56)
.0005(.40)
.0003(.24) | Slope/.8
Curve/.8 | | | Siding | onent
(KBtu) | /sf)
9.72
3.58
1.28
8.71
7.34
4.07 | 4.17
.930
/ft) | 1.03
2.28
6.52
9.28
7.03
7.03
7.16 | (/sf) | 3.48
3.48
.74
87
-1.24
-2.36
34.623 | (/sf)
21.99
50.67
31.82
9.66 | .324 | | | rototype | Comp | | 515
) 68
ht (| 75 14
51 8
98 6
99 6
57 4
784
484 | | 328333 | .00 12
.00 12
0.27 5
2.98 3
6.18 | 405 | | | Δ. | Delta
(MBt | | lope(DD)
urve(DDS)
d Basemen | 4ft -9
8ft -9
4ft -9
8ft -10
8ft -10
iope(DD) | | fir -112,
fir -12,
fir -12,
fir -13,
intercept
lope(DD)
urve(DDS) | U-val
ane
ane -1 | Slope (DD)
Curve (DDS)
.43 MBtu
.14 MBtu | :
r | | MApartment
eating Load | | ≆αάαααααααα | S
Heate | R R - 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 | Crawl | RR R R R R R R R R R R R R R R R R R R | r) Window 1-P 2-P 3-P R-1 | 1 1 8 8 0 N N N N N N N N N N N N N N N N N |) | | WYEC | ponent
(KBtu) | (/sf)
33.12.68
12.68
6.38
6.38
5.38
4.62
2.57
2.57 | 8Ø2.16
36.494
(/ft) | 76.8
37.6
28.6
31.2
18.8
18.8
922.1 | (/sf) | 7.05
2.28
2.28
54
57
-3.698
1311.44 | 13.60
9.02
4.99 | 14.542
6.979
6.979 | ב
ב | | | elta Com
(MBtu) | -12.31
-12.31
-14.27
-16.64
-17.95
-17.95
-18.33 | (00) 2 (00) | -9.85
-10.87
-11.14
-11.05
-11.41
cept
(DD) 7 | Basement | -7.75
-10.61
-11.66
-12.32
-12.32
(00)
(00) 4 | tion (
.088
) -5.58
)-10.33 | Ø1ELF
Ø1ELF
Bas
Typica | 00.80 | | Boise ID | ۵ | C 6 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | Slope
Curve | R-0
R-5 2ft
R-5 2ft
R-10 2ft
R-10 4ft
R-10 4ft
Slope
Curve | Unheated | R-0
R-11 flr
R-19 flr
R-30 flr
Inter
Slope | Infiltra
ELF Ach
.0007(.77
.0005(.58 | Stope/.Øl
Curve/.Øl | | | | mponent
(KBtu) | (/sf)
1.66
1.96
.79
.63
.64
.54 | 412.87
-19.532
(/ft) | 2.000
1.76
1.34
1.004
000
91.26 | (/sf) | 2.07
2.52
2.53
2.59
2.59
2.61
2.61
2.631
2.631 | 1.4
1.4
1.6
1.5
1.0 | 85.67
-1.179 | |--------------|----------------------------------|--|------------------------------|---|----------|--|---|---| | _ | elta Com
(MBtu) | .00
85
- 1 .97
- 1 .16
- 1 .25
- 1 .11 | (DD)
(DDS)
sement | -2.49
-2.85
-2.89
-2.96
-3.01
(DD)
(DD) | | .000
.70
.77
.80
.80
.81
.81
.83
.60
.60 | . 000
 | (DD)
(DDS)
(DDS)
Btu
Btu
Btu | | Cooling Load | ۵ | Wall
R-0
R-1
R-11
R-13
R-34
R-34 | Slope
Curve
Heated Bas | R-6
R-5 4ft
R-5 8ft
R-10 4ft
R-10 8ft
Inter
S-0pe | Crawl | R-6
R-11 fr
R-13 fr
R-30 fr
R-38 fr
Inter
Sclope | | Slope(Curve(Curve) 12.82 MB 4.09 MB -2.66 MB | | ŭ | mponent
(KBtu) | (\square\) (\$s\) 1.36 1.36 1.007 1.81 5.83 5.43 5.84 | 783.17
-42.224
(/ft) | -2.63
-1.73
-1.19
-1.65
77
1.005
587.52
23.623 | t (/sf) | 2.17
2.17
2.17
2.711
2.711
56.737 | ٠
س | 1.006
.000.
 | | | Deita Component
(MBtu) (KBtu) | . 00
-2.77
-3.21
-3.61
-4.06
-4.21
-4.21
-4.34
-4.34 | (00)
(008) | -3.62
-3.47
-3.38
-3.44
-3.31
rcept
e(DD)
e(DDS) | Basement | -2.49
64
15
15
.16
(00)
-(00) | tion
00 | 001ELF
001ELF
Base
Typica
Residua | | | | C | S Curve | R-6
R-5 2ft
R-5 4ft
R-10 2ft
R-10 4ft
Inter
Slope
Curve | Unheated | R-11 flr
R-19 flr
R-30 flr
Inter
Slope
Curve | r n r re e | Slope/.0
Curve/.0 | | | omponent
(KBtu) | (/sf)
32.05
15.69
13.36
10.54
9.14
6.57
5.00 | 6532.83
106.827
(/ft) | 100.04
68.59
56.60
60.04
41.54
4292.73 | (/sf) | 19.37
15
-3.40
-5.41
-5.87
-7.20
-10.237
-7.20 | (/sf)
158.75
73.90
46.92
15.19 | 501.80
18.505 | | 77 | Delta Co
(MBtu) | .00
-18.38
-21.00
-24.17
-25.74
-30.40 | (DD)
(DDS) -
sement | -13.23
-18.45
-20.44
-19.87
-22.94
(OD)
(DDS) | | .88
-38.87
-35.87
-38.17
-38.88
-48.92
-600t - | . 60 | (DD) 6
(DDS) -
Btu
Btu
Btu | | Heating Load | Ü |
Wall
R-0
R-1
R-11
R-13
R-27
R-34 | Slope
Curve
Heated Ba | R-6
R-5
R-5
R-5
R-10 4ft
R-10 8ft
Inter
S-000 | Crawi | R-6
R-11 flr
R-19 flr
R-38 flr
R-38 flr
R-9 flr
Slote
Curve | Window U-
1-Pane
2-Pane
3-Pane
R-10 | Slope
Curve
175.80 M
60.30 M
7.14 M | | H | omponent
(KBtu) | (/sf)
33.45
13.35
10.14
7.26
6.15
4.67
3.77
2.96
2.96 | 6780.42
192.163
(/ft) | 52.69
21.30
11.90
15.40
2.27
2.27
2.27
2.27
4.8397.27 | t (/sf) | 10.78
-2.45
-4.31
-9.319
6802.93
562.190 | (/sf flr)
22.31
15.86
9.47 | 31.363
.731
.6 Load = 1 Load = 1 Load = 1 | | | Delta Com
(MBtu) | 00.
1.35.90
1.46.33
1.46.34
1.45.76
1.45.76
1.45.77
1.45.76 | - (sgg)
- (ggs) | -21.09
-26.30
-27.86
-27.28
-29.46
-29.46
(DD)
(DD) | Ваѕетеп | -13.23
-29.16
-33.62
-36.48
cept
(DD)
(DD) | tion () .000 () -9.93 | Ø1ELF
Ø1ELF
Bas
Typica
Residua | | | J | 0 | Slope
Curve
Slab | R-0
R-5 2ft
R-5 4ft
R-10 2ft
R-10 4ft
Slope
Curve | Unheated | R-0
R-11 f-r
R-19 f-r
R-3Ø f-r
Slope
Curve | Infiltra
ELF Ach
.0007(.91
.0005(.67 | Slope/.003
Curve/.003 | One Story Prototype Siding Series Two WYEC Boston MA | | | | | | • | | | | |-----------------------|-------------|----------------------------------|--|---|--|--|--|---| | | | nponent
(KBtu) | (/sf)
1.36
1.88
.58
.42
.42
.35 | 271.65
-3.607
(/ft) | ; | 1.76
2.54
2.65
2.65
2.65
2.69
2.986
2.986
2.986
2.986 | (/sf)
-1.68
-1.61
-1.07 | 196.34
5.021 | | | ooling Load | Delta Com
(MBtu) | Wall
R-0
R-7 .32
R-11 -37
R-13 -44
R-19 -44
R-27 -52 | Slope(DD)
Curve(DDS)
Heated Basement | R-6
R-5 4ft99
R-5 8ft99
R-10 4ft -1.01
R-10 8ft -1.01
Slope(DD)
Curve(DDS) | R-0
R-11 flr .38
R-19 flr .58
R-30 flr .55
R-38 flr .55
Intercept .59
Slope(DD) - | Window U-value 1-Pane .00 2-Pane .01 3-Pane .09 R-10 .18 | Slope(DD) -
Curve(DDS)
9.12 MBtu
5.89 MBtu
2.11 MBtu | | | S | ponent
(KBtu) | (/sf)
3.02
1.22
1.22
67
67
36
28 | 635.74
21.177
(/ft) | 8 2 3 4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 | 2.529
781.24
1.95
2.529
781.24 | /sf flr)
.50
.35 | . 708
. 6000
. Load :: | | Series Two | | Delta Com
(MBtu) | Ceiling
R-0
R-7
R-11 -1.08
R-19 -1.41
R-22 -1.41
R-38 -1.55
R-49 -1.65
R-60 -1.65 | Slope(DD) Curve(DDS) -: Slab | -6 2ft -1.36
-5 2ft -1.31
-10 2ft -1.27
-10 4ft -1.27
-10 4ft -1.24
 Intercept Slope(DD) -1
 Curve(DDS) -1 | Intercept Slope(DDS) - Curve (DDS) | Infiltration (/
ELF Ach
0007(.73) .00
0005(.52)17
0003(.31)34 | Slope/.001ELF
Curve/.001ELF
Base
Typical
Residual | | Town Prototype Siding | g Load | Delta Component
(MBtu) (KBtu) | Wali
R-0 31.27
R-7 -7.85 14.79
R-11 -8.97 12.44
R-13 -10.26 9.73
R-19 -10.90 8.39
R-27 -12.03 6.02
R-34 -12.72 4.57 | Slope(DD) 5898.01
Curve(DDS) -15.849
ted Basement (/ft) | 4ft -9.43 75
8ft -9.48 61
0 4ft -9.87 64
0 8ft -10.68 43
Intercept 1374
Curve(DDS) -333. | 1 flr -11.12 2.1
3 flr -12.948
6 flr -14.05 -2.6
8 flr -14.05 -2.6
9 flr -15.03 -4.3
Intercept -7.12
Slope(DD) 5659.0
Curve(DDS) -44.51 | 1-Pane .00 145.04 .2-Pane -11.84 62.82 .3-Pane -15.18 39.62 .R-10 -19.11 12.33 | Slope(DD) 5219.61
Curve(DDS) 10.395
5.28 MBtu
6.77 MBtu
1.58 MBtu | | WYEC Mid | Heatin | Component
u) (KBtu) | (/sf)
34.92
13.56
10.15
7.08
4.51
2.87
2.87 | 106.568
(/ft) Hea | 54.33 R-
21.83 R-
12.83 R-
16.08 R-
3.58 R-
7543.72 | 8.16
1.69
1.69
-1.88
-1.88
5315.57
507.945 | (/sf flr) Wi
20.41
14.11
8.18 | 25.875
4.688
se Load = 8
af Load = 2 | | Boston MA | | Delta Co
(MBtu) | Ceiling
R-0
R-7
R-1
R-11
R-19
R-16.70
R-30
R-30
R-38
R-49
R-49
R-49
R-60
R-60
R-19.23 | Slope(DD)
Curve(DDS)
Slab | 5 2ft -11.5
5 4ft -11.9
10 2ft -11.9
10 4ft -12.2
Intercept Slope(DD)
Curve(DDS) | -0
-11 flr
-19 flr
-30 flr
Slope
Curve | Infiltration
ELF Ach
.0007(.93) .000
.0005(.68) -7.56
.0003(.42)-14.67 | Slope/.001ELF
Curve/.001ELF
Base
Typica
Residua | | | | Component
(KBtu) | Ş. | 58 | 382.81
-22.322
(/ft) | -162. | (/sf) | | -124.08
-6.612
(/sf) | 7.7 | .326.28
8.737 | | |---|--------------|---------------------|----------------|--|------------------------------|--|----------|---|---|---|----------------------------|--------------------------------------| | | 70 | Delta Co
(MBtu) | | | e(DD)
e(DDS)
asement | じこ こ | | Ω.
Θ. | (SC) | | - (sag)
- (da) | MBtu
MBtu
MBtu | | | Cooling Load | | - 6 | R-11
R-13
R-27
R-34 | Slope
Curve
Heated Bas | R-6
R-5 4ft
R-5 8ft
R-10 4ft
R-10 8ft
Inter
Slope | Crawl | t | - C O D → C
O D → C O D → C O D → C O D → C O D → C O D → C O D → C O D → C O D → C O D → C O D → C O D → C O D → C O D → C O D → C O D → C O D → C O | 4444 | Slope | 8.07 ME
5.20 ME
1.79 ME | | | ŭ | omponent
(KBtu) | 201- | 7. 1. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. | 460.65
2.590
(/ft) | -6.72
-5.05
-4.72
-4.88
-3.88
-1.927
-652.68 | ; (/sf) | 20. 11 . 12 . 12 . 12 . 12 . 12 . 12 . 1 | -6/0.49
60.133
(/sf flr) | . 40
. 28
. 16 | .500 | b Load =
 Load =
 Load = | | : | | Delta Co
(MBtu) | 0,00 | -1.23
-1.58
-1.58
-1.58
-1.59 | (saa)
(aa) | -1.044
99
98
99
95
(OD)
-(DDS) | Basement | 82
100
000
000 | (on
lon | | Ø1ELF
Ø1ELF | Base
Typical
Residual | | • | | _ | .00. | | Slope
Curve | R-6
R-5
2ft
R-5
4ft
R-10
10 ter
Slope
Curve | Unheated | R-11 flr
R-13 flr
R-30 flr
R-30 flr | Slope
Curve
Infiltra | ELF Ach
.0007(.73)
.0005(.52)
.0003(.31) | Slope/.0011
Curve/.0011 | | | | | omponent
(KBtu) | £ 4.0. | 9.52
9.52
8.17
4.45 | 5697.56
28.509
(/ft) | 145.63
88.13
71.30
74.80
51.13
.000
.000
-36.393 | (/sf) | 22.41
3.35
-1.61
-2.04
-3.27 | 38. | 143.54
6Ø.21
37.85
11.56 | 864.67
21.685 | | | | 771 | Delta Co
(MBtu) | 0.6. | -6.96
-7.38
-8.12
-8.56 | (DD)
(DDS)
sement | -9.07
-10.80
-11.31
-11.20
-11.91
cept
(DD)
(DDS) | | -11.43
-13.28
-14.41
-14.66
-15.41 | (DDS) | .00
-12.00
-15.22
-19.01 | (00)
4 (00s) | MBtu
MBtu
MBtu | | | Heating Load | | - 0 | R - 13
R - 13
R - 24
R - 34 | Slope
Curve
Heated Bas | R-6
R-5 4ft
R-5 8ft
R-10 4ft
R-10 8ft
Slope
Curve | Crawi | R-6
R-11 f-r
R-13 f-r
R-38 f-r
R-49 f-r
R-40 f-r
R-10 f-r | - ⊃ } | 1-Pane
2-Pane
3-Pane
R-10 | Slope | 80.84 MI
24.68 MI
1.96 MI | | | H | omponent
(KBtu) | st | 2.7.2
2.7.2
2.7.2
2.7.2 | 3163.12
-69.124
(/ft) | 71.13
36.96
27.30
30.96
17.63
-9.237
6056.15 | (/sf) | 7.28
2.04
.11
-1.13
-4.604 | 84.196
/sf flr) | 20.24
13.93
8.64 | 25.229
5.261 | | | | | elta (
(MBtu) | ng6
-12.6 | -16.42
-17.06
-17.90
-18.41
-18.84 | - (SQQ)
- (QQ) | -11.31
-12.63
-12.63
-12.51
-12.91
(ob) BB
(DD) BB | Basement | 22
38
112 | 4) |) -7.57
)-14.63 | .001ELF | Base
Typica
Residua | | | | ۵ | . o | . R. | Slope
Curve
Slab | R-6
R-5
2ft
R-5 2ft
R-10 2ft
Interc
Slope
Curve | Unheated | R-0
R-11 flr -12
R-19 flr -13
R-30 flr -14
Intercept | Curve
Infiltra | 0.004 | Slope/.06
Curve/.06 | | | | | | | | | | | | | | | | MApartment Prototype Siding Series Two WYEC Boston MA | | | component
(KBtu) | (/sf)
5.68
2.54 | 6 | 4 | 9. | | 952.87
19.233 | (/ft) | 41.40
37.78
36.88
36.64
35.25
31.627
402.70 | (/sf) | 7.30
6.27
5.88
5.85
5.46
5.25
4.715
1148.62 | (/sf)
7.66
1.76
1.02
.14 | 37.39
9.578 | | |----------------------------|-------------|----------------------------------|------------------------------|-------------------------------|----------------------------------|----------------------|--|---|-----------------------|---|---------------------------|---|--|--|--| | | ooling Load | Delta Con
(MBtu) | Wall
R-0 .00
R-7 -3.53 | -11 -4.0 | -19 -4.7 | -27 -5.2
-34 -5.5 | | Slope(DD)
Curve(DDS) | leated Basement | -6 4ft -4.37
-5 8ft -5.12
-10 4ft -5.18
-10 8ft -5.39
Intercept
Slope(DD)
Curve(DDS) |] wer: | -0
-11 flr -1.58
-19 flr -2.72
-30 flr -2.73
-49 flr -3.16
Intercept
Slope(DD)
Curve(DDS) - | Vindow U-value
1-Pane .000
2-Pane -1.09
3-Pane -1.23
R-10 -1.39 | Slope(DD)
Curve(DDS) | 76.72 MBtu
45.57 MBtu
11.31 MBtu | | Series Two | Cool | Delta Component
(MBtu) (KBtu) | 8 6 | -11 -10.88 2.8 | -13 -12.23 1:3
-22 -12.70 1.6 | -30 -13.32 1.2 | -49 -14.05 .8
-60 -14.27 .6 | Slope(DD) 1823.09
Curve(DDS) -25.187 | Slab (/ft) H | R-6 -10.29 5.74 R
R-5 2ft -10.88 2.18 R
R-5 4ft -11.01 1.40 R
R-10 2ft -11.01 1.40 R
R-10 4ft -11.09 .92 R
Intercept .000
Slope(DD) 173.02
Curve(DDS) 39.432 | Unheated Basement (/sf) C | R-0
R-11 flr -3.60 4.96 R
R-19 flr -3.72 4.88 R
R-30 flr -3.72 4.88 R
Intercept 4.744 Slope(DD) 220.56 Curve(DDS) -53.728 | Infiltration (/sf flr) W
ELF Ach
.0007(.68) .00 9.82
.0005(.48) -4.01 7.22
.0003(.30) -8.27 4.45 | Slope/.001ELF 15.455
Curve/.001ELF -2.029 | Base Load =
Typical Load =
Residual Load = | | One Story Prototype Siding | ating Load | Delta Component
(MBtu) (KBtu) | 6.4 | -11 -2.80 1.1 | -13 -3.15 .0
-19 -3.32 .7 | -27 -3.55 .5 | 4. 20.21 | Slope(DD) 471.10
Curve(DDS) 39.783 | Heated Basement (/ft) | -0
-5
4ft
-5
8ft
-10
8ft
Interc
Slope
Curve | Crawl (/sf) | R-0 .00 2.78
R-11 fir -3.25 .67
R-19 fir -3.65 .41
R-30 fir -3.85 .28
R-38 fir -3.90 .25
R-49 fir -4.03 .16
Slope(DD) 351.90
Curve(DDS) 38.091 |) Window U-value (/sf)
1-Pane . ØØ 13.25
2-Pane -1.66 4.27
3-Pane -1.97 2.6Ø
R-10 -2.33 .64 | Slope(DD) 251.45
Curve(DDS) 9.489 | = 19.74 MBtu
= 5.45 MBtu
= .19 MBtu | | Brownsville TX WYEC | ө н | Delta Component
(MBtu) (KBtu) | eiling (/sf | -/ -4.8/ 1.8
-11 -5.64 1.3 | -19 -6.34 .8 | -30 -6.84 .5 | R-38 -7.01 .42
R-49 -7.14 .34
R-60 -7.22 .29 | Slope(DD) 757.24
Curve(DDS) 13.772 | Slab (/ft) | 2ft -4.18 4ft -4.23 4ft -4.22 6ft -4.26 6lope(DD) -58. iurve(DDS) 31.2 | Unheated Basement (/sf) | R-0 -3.15 .73 R-11 fir -3.98 .19 R-19 fir -4.13 .10 R-30 fir -4.23 .03 Intercept123 Slope(DD) 202.10 Curve(DDS) -6.857 | (/sf flr
.00 1.47
.97 .84
.68 .37 | Slope/.001ELF .617
Curve/.001ELF 2.110 | Base Load :
Typical Load :
Residual Load : | | ing Load | Delta Component
(MBtu) (KBtu) | Wali
R-0 .00 5.12
R-7 -1.33 2.33
R-11 -1.52 1.93
R-13 -1.73 1.50
R-19 -1.83 1.28
R-27 -2.00 .92
R-34 -2.11 .70 | Slope(DD) 882.80
Curve(DDS) 12.967
eated Basement (/ft) | -6 4ft -1.59 60.21
-5 8ft -1.77 55.71
-5 8ft -1.80 54.96
-10 4ft -1.82 54.46
-10 8ft -1.84 53.96
Intercept 52.238
Slope(DD) 149.11
Curve(DDS) 1.629 | awl (/sf) | -0 .00 6.66 -11 flr18 6.36 -19 flr40 6.00 -30 flr50 5.83 -38 flr52 5.80 -49 flr58 5.69 Intercept 5.218 Slope(DD) -113.015 | .00 -5.5
.38 -8.2
.01 -5.5
.46 -2.3 | Slope(DD) -1089.67
Curve(DDS) 33.279
62.15 MBtu
39.13 MBtu
17.07 MBtu | |-------------|----------------------------------|--|--|--|----------------------------|---|---|---| | Cooling | Delta Component
(MBtu) (KBtu) | Ceiling (/sf) R-0 .00 9.10 R-7 -3.48 3.31 R-11 -4.03 2.39 R-19 -4.53 1.55 R-22 -4.67 1.32 R-36 -4.86 1.01 R-38 -4.97 .82 R-49 -5.09 .62 R-60 -5.17 .49 | Slope(DD) 1387.94
Curve(DDS) 24.923
Slab (/ft) H | R-6 -3.91 2.21 R
R-5 2ft -4.0379 R
R-5 4ft -4.0379 R
R-10 2ft -4.05 -1.29 R
R-10 4ft -4.04 -1.04 R
Intercept .000
Slope(DD) -582.45
Curve(DDS) 79.563 | Unheated Basement (/sf) Cr | R-0
R-11 fir -1.69 4.01 R-19 fir -1.07 4.88 R-19 fir -1.07 4.88 R-19 R-19 fir -1.06 4.90 R-19 R-19 fir -1.06 4.90 R-19 fir -1.06 4.90 R-19 fir -1.06 Fir -1.06 A.90 Curve(DDS) -47.740 | Infiltration (/sf flr) Wi
ELF Ach
.0007(.68) .00 9.56
.0005(.49) -2.94 7.11
.0003(.30) -6.15 4.43 | Slope, @01ELF 15.625
Curve, .001ELF -2.812
Base Load =
Typical Load =
Residual Load = | | eating Load | Delta Component
(MBtu) (KBtu) | Wall
R-0
R-796 1.31
R-11 -1.10 1.03
R-13 -1.23 .76
R-19 -1.29 .63
R-27 -1.38 .45
R-34 -1.43 .33 | Slope(DD) 389.11
Curve(DDS) 42.970
Heated Basement (/ft) | R-0
R-5 4ft -1.25 6.72
R-5 8ft -1.45 1.72
R-10 4ft -1.45 1.72
R-10 8ft -1.48 .97
Intercept .062
Slope(DD) 66.00
Curve(DDS) 2.908 | Crawl (/sf) | R-0
R-11 flr -1.07 .75
R-19 flr -1.20 .53
R-30 flr -1.27 .42
R-38 flr -1.28 .40
R-49 flr -1.32 .33
Intercept .174
Slope(DD) 286.61
Curve(DDS) 33.781 | Window U-value (/sf) 1-Pane .00 10.91 2-Pane -1.11 3.21 3-Pane -1.29 1.93 R-10 -1.51 .43 | Slope(DD) 159.54
Curve(DDS) 9.617
8.49 MBtu
2.79 MBtu
.54 MBtu | | He | Delta Component
(MBtu) (KBtu) | Ceiling (/sf) R-0 4.86 R-1 -2.20 1.70 R-11 -2.20 1.20 R-22 -2.47 .74 R-30 -2.64 .62 R-38 -2.70 .36 R-49 -2.77 .29 R-60 -2.77 .29 | Slope(DD) 634.68
Curve(DDS)
31.181
Slab (/ft) | R-0 -1.43 2.22
R-5 2ft -1.48 .97
R-5 4ft -1.49 .72
R-10 2ft -1.49 .72
R-10 4ft -1.50 .47
Intercept .0000
Slope(DD) 131.62
Curve(DDS) 8.872 | Unheated Basement (/sf) | -1.25 .45
-1.41 .18
-1.45 .12
-1.47 .08
ppt019
(D) 135.12
(DS) -8.565 | trati
 Ach
 (.73)
 (.52)
 (.31) | Slope/.001ELF .083 Curve/.001ELF 2.188 Base Load = Typical Load = Residual Load = | Mid Town Prototype Siding Brownsville TX WYEC | | | omponent
(KBtu) | (/sf)
5.45
2.55 | 777 | → | 1004.92
1.488 | (/ft) | 63.39
58.72
58.06
56.89
56.22
53.111
318.65 | (/sf) | 5.54
5.63
5.25
5.25
4.96
4.80
4.261
1085.37 | (/sf) -3.12 -6.35 -4.31 | 879.07
28.817 | | |------------|----------|-----------------------------|----------------------------------|--------------------------------------|--|-----------------------------------|-----------|---|-------------|--|---|---|---| | | ъ | Delta Co
(MBtu) | 80.0 | -1.05
-1.20
-1.27 | 4.4. | e(DD)
e(DDS) | sement | -1.42
-1.56
-1.61
-1.61
-1.63
(0D) | | .000
.000
.017
17
35
35
44
(DD) 1
(DD) 1 | | - (sgg)
- (gg) | Btu
Btu
Btu | | | g Loa | _ | Wall
R-0 | R-11
R-13
R-13 | 9 10 | Slope | leated Ba | | - ×e L | | indow U-
1-Pane
2-Pane
3-Pane
R-10 | Slope | 49.59 MI
37.69 MI
15.31 MI | | | Coolin | mponent
(KBtu) | (/sf)
9.53
3.51 | . α. <u>4</u> . | 1.04
.82
.67
.57 | 98.21
8.393 | (/ft) H | 5.39 R
1.22 R
.72 R
.72 R
.22 R
.966
13.86 | (/sf) C | 3.17 R
4.19 R
4.22 R
4.24 R
61.39
61.39 | sf flr) W
9.54
7.16
4.50 | 6.042
3.438 | IIII
Load
Load | | Two | | elta Comp
(MBtu) (| | 7.7.8. | -5.03
-5.32
-5.33 | (00) 14
(00S) 1 | | -3.16
-3.28
-3.30
-3.30
-3.31
-3.31
-3.31
0D) -1 | asement | -1.42
81
77
77
77
77 | ion (/
.00
-2.86
-6.05 | 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - | Base
Typical
Residual | | Series | | ۵ | 6 | 777 | X X X X
X X X X X X X X X X X X X X X X | Slope
Curve | Slab | 6 2ft
5 4ft
10 2ft
10 4ft
Inter
Slope
Curve | heated B | 11 fir
19 fir
30 fir
Inter
Slope
Curve | Infiltrat
ELF Ach
0007(.68)
0005(.49)
0003(.30) | lope/.001
urve/.001 | - . | | e i | | | | | | | | ~ ~ ~ ~ ~ ~ | Ļ | 0. 0. 0. 0. | н ш о о о | νO | | | pe Sid | | omponent
(KBtu) | (/sf)
3.13
1.17 | വയാ | . 28 | 308.68
50.882 | (/ft) | 5.00
.34
33
-1.00
-1.948
62.83 | (/sf) | 2.54
 | 10.29
3.60
1.80 | 146.96
9.201 | | | Prototy | _ | elta C
(MBtu) | 900 | | ο. O. | (S00)
(D08) | sement | -1.38
-1.54
-1.54
-1.54
-1.56
(DD)
(DD) | | -1.14
-1.26
-1.33
-1.35
-1.35
-1.39
(DD)
(DD) | . 000
-1.05
-1.22
-1.43 | (S00)
(D08) | 8tu
8tu
8tu | | MApartment | ing Load | ۵ | -01- | 1 1 1 | N M
I I | Slope | eated Ba | -0
-5 4ft
-5 8ft
-10 4ft
-10 8ft
Inter
Slope
Curve | - wer | -11 fl
-19 fl
-38 fl
-49 flr
Inter
Slope
Curve | indow U-
1-Pane
2-Pane
3-Pane
R-10 | Slope | 7.90 M
2.51 M
.64 M | | Σ× | ā
t: | | | | | | I | ~ ~ ~ ~ ~ ~ | O | ~ ~ ~ ~ ~ ~ ~ | ≯ | | | | EC | H
O | nent
Btu) | . 4 S | • - 9 - | 2.5.3.5
2.88.5.5
2.88.5.5 | 2.34 | /ft) | .50
.50
.34
.34
.000
2.31 | /sf) | . 027
. 027
. 022
. 032
. 085
. 085
. 533 | f flr)
1.07
.55
.20 | . 188 |

 | | WYE | • | Mpone
(KBt | (/sf
0 4.9
5 1.7 | 200 | 4.6.2. | | | 1.00
1.00
1.00
12.3
15.25 | \$/) | 530
530
530
104 .0
104 .0 | (/sf fl
0 1.07
3 .55
5 .20 | 2.18 | Base Load
ical Load
dual Load | | I TX WYE | • | elta Compone
(MBtu) (KBt | (/sf
.00 4.9
1.95 1.7 | 2.55 | 4.66.66 | (DD) 612.3
(DDS) 38.02 | 4- | -1.48 1.6
-1.51 .5
-1.52 .3
-1.52 .3
-1.52 .3
-1.52 .1
(OD) 12.3
(DDS) 15.25 | S | 38 | tion (/sf fl
.000 1.07
63 .55
1.05 .20 | ELF00 | se Load
al Load | | e TX WYE | • | Mpone
(KBt | (/sf
0 .00 4.9
7 -1.95 1.7 | -19 -2.55
-19 -2.55
-22 -2.626 | -36 -2.77 .3
-38 -2.77 .3
-49 -2.81 .2
-60 -2.84 .2 | lope(DD) 612.3
urve(DDS) 38.02 | 4- | | asement (/s | 1.380
1.510
1.530
t088
t088
t088
() | ion (/sf fl
.00 1.07
63 .55
-1.05 .20 | 2.18 | Base Load
Typical Load
esidual Load | | | Component
(KBtu) | (/sf)
1.23
1.68
.61
.47
.30 | 316.22.
-16.249
(/ft) | 2.947
.988
.32
.338
.35
.35
.474.1 | /sf)
1.64
2.25
2.36
2.49 | 2.5
2.73
336.4
24.18 | (/sf)
.64
.43
.28 | 46.09
1.820 | |--------------|---------------------|--|------------------------------|---|---|-------------------------------|---|---| | -p
es | Delta Co
(MBtu) | | (DD)
(DDS)
sement | t -2.04
t -2.30
t -2.48
t -2.48
t -2.47
ercept
pe(DD)
ve(DDS) | 9.0.1
9.0.1
9.0.1
9.0.1
9.0.1 | 1.4
e(DD)
e(DDS) | -value
• .00
•04
•07 | e(DD)
e(DDS)
MBtu
MBtu
MBtu | | Cooling Load | | RRRRR
61-1-1-1-R
-0-1-1-1-1-0-0-1-1-1-1-1-1-1-1-1-1-1-1- | Slope
Curve
Heated Bas | R-0
R-5 4ft
R-5 8ft
R-10 4ft
R-10 8ft
S-00 | Craw R-10 #1 | Int
Int
Slo
Cur | Window U
1-Pan
2-Pan
3-Pan
R-10 | Slope
Curve
9.23
2.14
1.92 | | J | omponent
(KBtu) | (/sf)
2.69
2.69
1.10
85
1.10
1.10
1.10
1.10
1.10
1.10
1.10
1.1 | 587.12
-22.544
(/ft) | -2.27
-1.37
-1.13
-1.13
-2.29
1.764
-706.77 | t (/sf) .32 1.35 1.66 1.87 | 2.421
-760.52
68.392 | (/sf fir)
.24
.15
.08 | . 162
. 162
. Load = 1 Load = 1 Load = 1 | | | Delta Co
(MBtu) | 0. 1. 2. 2. 2. 2. 2. 3. 3. 3. 3. 3. 3. 3. 3. 3. 3. 3. 3. 3. | pe(DD)
ve(DDS)
b | -2.91
-2.76
-2.72
-2.72
-2.58
-2.72
-2.66
-2.72
-2.68 | d Basement -2.04 -3.46 r .34 | cept
B(DD)
B(DDS) | ation
(2)000
(3)13
(5)24 | .001ELF
.001ELF
Base
Typica
Residua | | , | | 0 | Slop
Curv
Slab | R-6
R-5 2ft
R-5 4ft
R-10 2ft
R-10 4ft
Inter
Slope | Unheated
R-0
R-11 flr
R-19 flr
R-30 flr | Slop | Infiltra
ELF Ach
.0007(.76
.0005(.56 | Slope/.
Curve/. | | | component
(KBtu) | (/sf)
36.65
18.02
15.38
12.14
7.58
5.76 | 7549.53
137.921
(/ft) | 116.37
79.87
66.07
70.05
48.54
.000
5152.42 | | -11.
7175
116. | (/sf)
180.92
85.79
54.56
17.83 | 7650.43
-30.202 | | 0 | Delta Co
(MBtu) | .00
-20.90
-23.87
-27.51
-23.63
-32.63 | e(DD)
e(DDS) -
asement | -14.76
-20.76
-23.05
-22.39
-25.96
rcept
e(DD)
e(DDS) | -34 - 000
-390 - 000
-443 - 36
-445 - 18 | 9pt
00)
00s) - | .value
.000
-17.58
-23.35
-30.14 | (DD)
(DDS)
8tu
8tu
8tu | | ating Loa | | Wa N N N N N N N N N | Slop
Curv.
Heated B | R-6
R-5
8-5
8-1
8-10
10
10
10
00
00
00
00
00
00
00
00
00
0 | Craw
R-0
R-11 f
R-30 f r
R-30 f r | Sur | Window U-v:
1-Pane
2-Pane
3-Pane
R-10 | Slope
Curve
205.37 M
73.84 M
8.90 M | | Ŧ | Component
(KBtu) | 38.25
11.529
11.62
8.33
7.36
5.36
7.36
7.36
7.36
7.36
7.36
7.38 | 7784.54
224.877
(/ft) | 57.0
10.5
14.6
14.6
22.7
224.0 | t (/sf)
12.54
.69
-2.63
-4.77 | 6.626 | (/sf flr)
26.14
18.58
11.10 | 36.721
.893
.804 = [coad = 1] | | | Delta Co
(MBtu) | ing
 | • (DD)
• (DDS) - | -24.5
-30.4
-31.5
-31.5
-34.1
rcept
e(DD) | -14.70
-32.96
-38.07
-41.36 | (00)
(00) | | .001ELF
.001ELF
Base
Typica
Residua | | | | C C C C C C C C C C C C C C C C C C C | Slop
yrun
del S | 2ft
2ft
3 2ft
Into
Slop
Curv | Unheated R-0 R-11 fir R-19 fir R-30 fir | Slop
Curve | Infiltra
ELF Ach
.0007(.96)
.0005(.69)
.0003(.43) | Slope/. | One Story Prototype Siding TMY Buffalo NY | Partial Distance Partial Component Parti | | | | | | | | | | |
--|------------|------------|-----------------------|---|---|---|---|---|--|--| | Delta Component | | | nponent
(KBtu) | <i>(</i>) · · · · · · · | 268.1
13.35
(/ft | 4.1-1.11.11.11.11.11.11.11.11.11.11.11.11 | 2 2 2 2 2 4 2 2 2 3 4 2 4 2 4 2 4 2 4 4 2 4 4 2 4 4 4 4 | /sf
1.4
1.9
1.3 | 165.1
3.33 | | | Delta Component | | - | elta (
(MBtu) | Ø 0.0 w w w 4 | (DD)
(DDS)
sement | 7
8
7
7
8
8
8
8
(00)
(00) | . 6
 | value
.00
.10 | (2) | | | Delta Component | | | | 32111176 | Slop
Curv | 1-6
1-5
1-16
1-16
1-16
1-16
1-16
1-16
1- | | indow U
1-Pan
3-Pan
R-1Ø | Slop
Curv
.77
.24
.14 | | | Delta Component | | Cool | nent
(Btu) | # R 0 L R 4 E C C L L | 6.30
.217
/ft) | 66.82
66.82
66.32
732
732
732 | 3.655 85
3.655 85
3.655 85 | f flr)
.20
.15
.09 | 000 000
000 000
000 | | | Delta Component (KBtu) | • | | (3) | | 0) 4
0S) -1 | -1.13
-1.67
-1.63
-1.65
-1.65
-1.63
-1.63
-1.63 | .78
.10
.15
.31
-10 | | ELF
ELF
Base
Typica | | | Delta Component (MBtu) (KBtu) | eries | | De 3 | - 6 - 11
- 11
- 11
- 12
- 22
- 36
- 38 | | S | E TTT HOUSE | ltrat
Ach
(.70)
(.50)
(.30) | 9. /e | | | Delta Component | Ξ. | | | | | وتودودود | 8-7-8-8-8-8-8-8-8-8-8-8-8-8-8-8-8-8-8-8 | I 300.00. | γO | | | Delta Component (ABtu) (KBtu) (KBtu) (KBtu) (KBtu) (KBtu) (KBtu) (MBtu) (KBtu) (MBtu) (MBtu) (KBtu) (MBtu) (MBtu) (KBtu) (MBtu) | . <u>.</u> | | mponen
(KBtu |
5.25
111.12
11.44
11.45
11.45
11.45
11.45
11.45
11.45
11.45
11.45
11.45
11.45
11.45
11.45
11.45
11.45
11.45
11.45
11.45
11.45
11.45
11.45
11.45
11.45
11.45
11.45
11.45
11.45
11.45
11.45
11.45
11.45
11.45
11.45
11.45
11.45
11.45
11.45
11.45
11.45
11.45
11.45
11.45
11.45
11.45
11.45
11.45
11.45
11.45
11.45
11.45
11.45
11.45
11.45
11.45
11.45
11.45
11.45
11.45
11.45
11.45
11.45
11.45
11.45
11.45
11.45
11.45
11.45
11.45
11.45
11.45
11.45
11.45
11.45
11.45
11.45
11.45
11.45
11.45
11.45
11.45
11.45
11.45
11.45
11.45
11.45
11.45
11.45
11.45
11.45
11.45
11.45
11.45
11.45
11.45
11.45
11.45
11.45
11.45
11.45
11.45
11.45
11.45
11.45
11.45
11.45
11.45
11.45
11.45
11.45
11.45
11.45
11.45
11.45
11.45
11.45
11.45
11.45
11.45
11.45
11.45
11.45
11.45
11.45
11.45
11.45
11.45
11.45
11.45
11.45
11.45
11.45
11.45
11.45
11.45
11.45
11.45
11.45
11.45
11.45
11.45
11.45
11.45
11.45
11.45
11.45
11.45
11.45
11.45
11.45
11.45
11.45
11.45
11.45
11.45
11.45
11.45
11.45
11.45
11.45
11.45
11.45
11.45
11.45
11.45
11.45
11.45
11.45
11.45
11.45
11.45
11.45
11.45
11.45
11.45
11.45
11.45
11.45
11.45
11.45
11.45
11.45
11.45
11.45
11.45
11.45
11.45
11.45
11.45
11.45
11.45
11.45
11.45
11.45
11.45
11.45
11.45
11.45
11.45
11.45
11.45
11.45
11.45
11.45
11.45
11.45
11.45
11.45
11.45
11.45
11.45
11.45
11.45
11.45
11.45
11.45
11.45
11.45
11.45
11.45
11.45
11.45
11.45
11.45
11.45
11.45
11.45
11.45
11.45
11.45
11.45
11.45
11.45
11.45
11.45
11.45
11.45
11.45
11.45
11.45
11.45
11.45
11.45
11.45
11.45
11.45
11.45
11.45
11.45
11.45
11.45
11.45
11.45
11.45
11.45
11.45
11.45
11.45
11.45
11.45
11.45
11.45
11.45
11.45
11.45
11.45
11.45
11.45
11.45
11.45
11.45
11.45
11.45
11.45
11.45
11.45
11.45
11.45
11.45
11.45
11.45
11.45
11.45
11.45
11.45
11.45
11.45
11.45
11.45
11.45
11.45
11.45
11.45
11.45
11.45
11.45
11.45
11.45
11.45
11.45
11.45
11.45
11.45
11.45
11.45
11.45
11.45
11.45
11.45
11.45
11.45
11.45
11.45
11.45
11.45
11.45
11.45
11.45
11.45
11.45
11.45
11.45
11.45
11.45
11.45
11.45
11.45
11.45
11.45
11.45
11.45
11.45
11.45
11.45
11.45
11.45
11.45
11.45
11.45
11.45 | 96ø.2
42.68
(/ft | 145.6
916.7
14.9
78.6
58.1
6591.8
6591.8 | 24.0
2.9
2.9
2.9
1.5
1.3
1.3
1.3
1.3
1.3
1.3
1.3
1.3
1.3
1.3 | 169.6
76.5
48.4
15.4 | 574.7
-5.6Ø | | | Delta Component (MBtu) (KBtu) (MBtu) (KBtu) (MBtu) (KBtu) R-0 R-0 R-10 | _ | | υÇ | . 0.0 ≒ 0.0.4
øø.e.e.r.e.e. | | 0 × 4 × 5 | 005-46 | 0440 | _ | | | Delta Component (MBtu) (KBtu) R-0 R-0 R-0 R-0 R-10 R-10 R-10 R-17 R-17 R-17 R-17 R-17 R-19 R-19 R-19 R-19 R-20 R-20 R-20 R-20 R-20 R-20 R-20 R-20 | | | w | | <i>a</i> a a | 1 1 1 800 | L 0 0 | -valu | 00 ∑∑∑ | | | Delta Com (MBtu) Red (MB | ₽ | ting Loa | w | - 0
- 1
- 11
- 13
- 27
- 34 | Slope
Curve | -6 4ft -
-5 8ft -
-10 4ft -
-10 8ft -
Slope(D | | ndow U-valu
1-Pane
2-Pane -13
3-Pane -17
R-10 -22 | Slope
Curve
01.66 M
34.46 M | | | Curve (14) (14) (14) (14) (14) (14) (14) (14) | F ₩ | eating Loa | onent De
(Btu) (| /sf) Wall
6.63 R-0
1.72 R-1
8.20 R-11
8.20 R-13
6.93 R-19
5.24 R-27
8.32 R-34 | 64.10 Slope
3.141 Curve
(/ft) Heated Ba | 24.92 R-6 4ft - 14.42 R-5 8ft - 18.42 R-10 4ft - 3.67 R-10 8ft - 3.67 R-10 8ft - 6.63 Intercent S3.89 Slope(Dec.507) | (/st) Craw! 9.71 R-0 2.34 R-11 flr17 R-19 flr 1.79 R-38 flr | sf flr) Window U-valu
24.62 1-Pane
17.21 2-Pane -13
10.10 3-Pane -17
R-10 -22 | 2.541 Slope
3.750 Curve
Load = 101.66 M
Load = 34.46 M
Load = .98 M | | | | T P!W YMT | eating Loa | omponent De
(KBtu) | .00 40.17 R-0
14.72 15.63 R-7
17.07 11.72 R-11
19.18 8.20 R-13
19.94 6.93 R-19
20.96 5.24 R-27
21.57 4.22 R-34
22.10 3.32 | 5) -133.141 Slope
(/ft) Heated Ba | 96 62.17 R-0
45 24.92 R-5 4ft -
87 14.42 R-5 8ft -
71 18.42 R-10 4ft -
30 3.67 R-10 8ft -
-26.623 Interce
9453.89 Slope(D | 62 9.71 R-0
64 2.34 R-11 flr
6517 R-19 flr
52 -1.79 R-38 flr
R-38 flr
R-49 flr
6180.86 Slope
-597.118 Curve | ion (/sf flr) Window U-valu. .00 24.62 1-Pane -8.89 17.21 2-Pane -13 -17.42 10.10 3-Pane -17 | 32.541 Slope
3.750 Curve
lase Load = 101.66 M
cal Load = 34.46 M
lual Load = .98 M | | | Series Two | |----------------------| | Siding | | «Apartment Prototype | | MApar | | TMY | | Buffalo NY | | 70 | |----| | ø | | c | | | | | | a | | č | | .= | | 4 | | - | | | | 9 | | - | | | | | | Cooling Load | Delta Component
(MBtu) (KBtu) | Wall (/sf) R-0 .00 (92 R-715 .45 R-1117 .38 R-1320 .29 R-1922 .24 R-2723 .18 R-3425 .14 | Slope(DD) 178.54
Curve(DDS) -1.502
Heated Basement (/ft) | R-063 .93 R-5 4ft6757 R-5 8ft6790 R-10 4ft6790 R-10 8ft6757 Intercept .000 Slope(DD) -82.18 Curve(DDS) 2.643 | Crawl (/sf) | .000
.34
.34
.441
.49
.600
.31
.31 | Window U-value (/sf
1-Pane .00 -2.7
2-Pane .07 -2.2
3-Pane .19 -1.4
R-10 .325 | Slope(DD) -260.24
Curve(DDS) 5.887
5.82 MBtu
3.70 MBtu
1.98 MBtu | |--------------|----------------------------------|--|---|--|-------------------------|--|---|--| | J | Delta Component
(MBtu) (KBtu) | Ceiling (/sf) R-0 .000 2.34 R-787 .89 R-11 -1.01 .66 R-19 -1.14 .45 R-22 -1.17 .39 R-38 -1.23 .30 R-49 -1.36 .18 R-60 -1.32 .14 | Slope(DD) 416.08
Curve(DDS) -3.494
Slab (/ft) | R-0
R-5 2ft74 -2.90
R-5 4ft72 -2.07
R-10 2ft74 -2.57
R-10 4ft69 -1.07
Intercept 2.477
Slope(DD) -1246.66
Curve(DDS) 56.469 | Unheated Basement (/sf) | R-11 flr63 .05 R-11 flr17 .80 R-19 flr01 1.08 R-30 flr .10 1.26 Intercept 1.767 Slope(DD) -694.92 | (/sf
000
05 | Slope/.001ELF229
Curve/.001ELF .365
Base Load =
Typical Load =
Residual Load = | | Heating Load | Delta Component
(MBtu) (KBtu) | Wall (/sf) R-0 36.54 R-7 -6.12 17.22 R-11 -6.99 14.47 R-13 -7.99 11.32 R-19 -8.49 9.75 R-27 -9.36 7.00 R-34 -9.90 5.31 | Slope(DD) 6840.95
Curve(DDS) -8.977
Heated Basement (/ft) | R-0
R-5 4ft -12.25 103.30
R-5 8ft -12.83 84.14
R-10 4ft -12.71 88.14
R-10 8ft -13.54 60.47
Intercept .000
Slope(DD) 6183.67
Curve(DDS) -48.985 | Crawl (/sf) | R-0
R-11 flr -12.91 4.07
R-19 flr -15.03 .54
R-30 flr -16.37 -1.69
R-38 flr -16.37 -1.69
R-49 flr -17.55 -3.66
Intercept -6.956
Slope(DD) .79.649 | Window U-value (/sf
1-Pane .00 169.0
2-Pane -13.54 75.0
3-Pane -17.51 47.4
R-10 -22.19 14.9 | Slope(DD) 6356.96
Curve(DDS) 1.722
: 96.20 MBtu
: 31.93 MBtu | | Í | Deita Component
(MBtu) (KBtu) | Ceiling (/sf) R-0 .000 39.22 R-7 -14 43 15.17 R-11 -16.73 11.34 R-19 -18.80 7.89 R-22 -19.52 5.03 R-38 -21.11 4.04 R-49 -21.62 3.19 R-60 -21.94 2.65 | Slope(DD) 7249.66
Curve(DDS) -107.013
Slab (/ft) | R-Ø -13.03 77.30
R-5 2ft -14.20 38.47
R-5 4ft -14.55 26.97
R-10 2ft -14.41 31.47
R-10 4ft -14.89 15.64
Intercept -17.417
Slope(DD) 10370.65
Curve(DDS) -175.171 | Unheated Basement (/sf) | R-Ø -10.29 8.44 R-11 flr -13.84 2.52 R-19 flr -15.16 .32 R-30 flr -16.00 -1.08 Intercept -5.041 Slope(DD) 5463.17 Curve(DDS) -552.698 | (/sf
.00 24
.88 17
.40 10 | Slope/.001ELF 32.437 Curve/.001ELF 3.802 Base Load = Typical Load = Residual Load = | | (KB) (KB) (KB) (KB) (KB) (KB) (KB) (KB) | (/sf)
03
.24
.17 | 38.23
-1.486 |
--|--|--| | (MBtu) (M | | (DD)
(DDS)
Btu
Btu
Btu | | Ing Loan Name Nam | Window U-,
1-Pane
2-Pane
3-Pane
R-10 | Slope
Curve
9.09 MB
1.54 MB
-2.09 MB | | (KBtu)
3.255
3.255
3.256
1.333
1.335
1.335
1.65
1.65
1.65
1.65
1.65
1.65
1.65
1.6 | (/sf flr)
.19
.14
.09 | .325
081
081
 | | Two (MBtu) and | | 01ELF
01ELF
Bas
Typica
Residua | | oeries RR-0-11 RR-130 RR-130 RR-130 RR-130 RR-130 RR-11 RR-130 RR-130 RR-130 RR-130 RR-10 RR-1 | Infiltrat
ELF Ach
.0007(.56)
.0005(.40)
.0003(.24) | Slope/.001E
Curve/.001E | | 6 | | | | 1. / 204844. 1. / 20484. 1. / 20484. 1. / 20484. 1. / 20484. 1. / 20484. 2048. 2048. 2048. 20484. 20 | (/sf)
192.28
94.01
59.94
19.88 | | | Proto- MBta C C C C C C C C C C C C C C C C C C C | .00
-18.16
-24.46
-31.86 | (DDS) 8
(DDS) -
Btu
Btu
Btu | | Story W W W W W W W W W W W W W W W W W W W | ndow U-i
1-Pane
2-Pane
3-Pane
R-10 | Slope
Curve
6.81 M
7.06 M
1.20 M | | 2 C C C C C C C C C C C C C C C C C C C | . <u>-</u>
≽ | 21 = 7 | | TMY (KBtu) (St) (St) (St) (St) (St) (St) (St) (St | (/sf flr)
24.90
17.67
10.53 | 34.773
1.136
se Load
11 Load | | VT 13.6 % Sec. 1. 13. | Eion
.000
-11.13 | 01ELF
01ELF
Bas
Typica
Residua | | 0 | Infiltra
ELF Ach
6007(.81)
6005(.58)
6003(.35) | Slope/.0011
Curve/.0011 | | | | Component
(KBtu) | (/sf)
1.32
75
.75
.67
.67
.84
.34 | 354.11
-20.345
(/ft) | 97
-1.72
-1.72
-1.72
-1.22
-1.22
-1.39,88 | (/sf) | ± 4. | (/sf
(/sf
-3.0
-2.1
-1.3 | 233.21
4.495 | |---|--------------|---------------------|---|---------------------------------------|--|----------|---|---|---| | | ֿֿסַ | Delta Co
(MBtu) | | e (DD)
e (DDS)
asement | 78
73
73
73
73
71
(00)
(00) | | fir .38
fir .41
fir .45
fir .45
fir .47
fir .50 | | ve(DD) -
ve(DDS) -
MBtu
MBtu
MBtu | | | Cooling Loa | | X X X X X X X X X X X X X X X X X X X | Slope
Curve
Heated Bas | R-6
R-5 4ft
R-5 8ft
R-10 4ft
R-10 8ft
Slope
Curve | Crawl | R-0
R-11 flr
R-19 flr
R-38 flr
R-49 flr
Inter | Window U-
1-Pane
2-Pane
3-Pane
R-10 | Slope
Curve
6.31 MI
3.61 MI
1.92 ME | | | ŭ | Component
(KBtu) | (/sf)
3.02
1.17
1.17
88
.62
.50
.36
.27 | 552.88
-7.467
(/ft) | -8.72
-6.72
-6.22
-6.72
-5.22
-2.508
-932.79 | t (/sf) | 7.06
1.10
1.42
1.62
1.62
2.159
-732.58 | . t + 1.00. | . 167
. 000
. 0000
. Load | | | | Delta Co
(MBtu) |
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00 | (DD)
(DDS) | -1.01
-93
-93
-91
-93
-93
-93
-93
-93
-93
-93
-93
-93
-93 | Basement | 76
.19
.19
.31 | 00 1 80 1 | .001ELF
.001ELF
Base
Typical
Residual | | , | | | Ce RR-1011 RR- | S S S S S S S S S S S S S S S S S S S | R-6
R-5 2ft
R-5 4ft
R-10 2ft
R-10 4ft
Interc
Slope
Curve | Unheated | R-0
R-11 flr
R-19 flr
R-30 flr
Interce
Slope(C | Infiltra
ELF Ach
.00007(.56)
.00005(.40)
.0003(.24) | Slope/.i | | | | omponent
(KBtu) | (/sf)
39.80
19.11
16.17
12.67
7.87
5.99 | 7763.74
-67.729
(/ft) | 163.57
101.32
82.57
86.32
59.32
.000
.000 | (/sf) | 25.05
3.15
63
-3.02
-3.56
-5.14
-8.761
160.929 | 27 (| 7095.28
-14.767 | | | ק | Delta Co
(MBtu) | | e (DD)
e (DDS)
asement | -8.49
-10.98
-11.73
-11.58
-12.66
-12.66
-12.66
-10.00
-10.00 | | .000
-13.14
-15.41
-16.84
-17.17
-18.11
(DD) | U-value
nne .000
nne -13.77
nne -18.06 | (DD) (e(DDS) MBtu MBtu | | | Heating Load | | Wa - R - R - R - R - R - R - I - I - I - I | Slope
Curve
Heated Ba | R-6
R-5 4ft
R-5 8ft
R-10 4ft
R-10 8ft
Inter
S-0pe
Curve | Crawi | R-6
R-11
R-13 f-r
R-38 f-r
R-9 f-r
R-9 f-r
C-rope | Window U
1-Pan
2-Pan
3-Pan
R-10 | Slope
Curve
105.13 h
34.43 h
2.67 h | | | Ŧ | mponent
(KBtu) | (/sf)
44.30
17.33
13.03
9.16
7.75
5.86
4.71
3.72 | 8475.64
169.359
(/ft) | 71.5
28.5
16.5
20.8
20.8
28.24
904.2 | t (/sf) | 16.96
2.64
-18
-2.00
-7.032
6927.09 | (/sf flr)
23.19
16.15
9.44 | 30.208
4.167
6 Load = Load = | | | | Delta Co
(MBtu) | . ng
. 00
. 00
. 18 . 18 . 18 . 18 . 18 . 12 . 23 . 08
. 23 . 08 23 . 75 24 . 35 | (00) e (00) | -12.17
-13.89
-14.37
-14.20
-14.85
-14.85
-10.00 | Ваѕешел | -8.49
-13.45
-15.14
-16.23
-16.23
-16.00
-(DD)
-(DD) | ation (h .000 3) .000 9) -8.45 6) -16.50 | 001ELF
001ELF
Bas
Typica
Residua | | | | | C C C C C C C C C C C C C C C C C C C | Slop
Curv
Slab | 2 2 4 5 2 6 4 6 10 2 6 4 6 10 4 6 6 10 C C C C C C C C C C C C C C C C C C | Unheated | R-8
R-13
R-13
R-13
R-13
S-15
C-15
C-15 | Infiltra
ELF Acl
.0007(.8:
.0005(.5: | Slope/.Curve/.6 | | | | | | | | | | | | Mid Town Prototype Siding TMY Burlington VT | | | omponent
(KBtu) | () sf
1.563
.586.
.32
.32
.25 | 254.02
-11.500
(/ft) | .63
20
53
53
37
900
-49.75 | (/sf) | 1.56
1.56
1.67
1.88
1.92
2.26
496.78 | -3.61
-2.64
-1.73
66 | 294.85
5.986 | | |------------|---------|---------------------|---|----------------------------|---|------------|--|---|----------------------------|---------------------| | | | elta (
(MBtu) | | (DD)
(DDS) -
sement | 54
57
56
56
56
(00)
(00) | | . 98
. 38
. 45
. 57
. 57
. 68
. 68
. 68
. 68
. 68
. 68 | . 60
. 14
. 27 | (DD) -
(DDS) -
Btu | 3tu
3tu | | | ng Load | <u>.</u> | ************************************** | Slope
Curve | | - we | 11 flr
19 flr
30 flr
49 flr
Intercept
Slope(DD) | indow U-1
1-Pane
2-Pane
3-Pane
,R-10 | Slope
Curve | 2.99 MB
1.63 MB | | | Cooling | | | £ | ¢ ¢ ¢ ¢ ¢ | Ç | \$\pi\$ \pi\$ \pi\$ \pi\$ | 1r.) Wi
9
3
2 | u | 11 U | | | | Component
(KBtu) | (/sf)
3.20
3.20
1.31
1.01
1.01
1.03
1.03
1.03
1.03
1.0 | 697.72
-26.648
(/ft) | -3.70
-2.03
-2.03
-1.53
-1.53
6.486
1972.86 | t (/st) | .03
.77
1.02
1.19
1.654
-639.46 | (/sf flr
09
13 | 60
.67 | ~
~ | | Ow L | | elta Cor
(MBtu) | | · (\$00) | 66
67
57
67
68
53
53
(DD) | Basement | 54
18
.06
.06
.16
(00)
.005) | | ELF
ELF
Ba | Typica
Residua | | Series | | ă ¯ | Ceil
R-6
R-11
R-11
R-22
R-38
R-38
R-49 | Slope
Curve | 2ft
4ft
8 2ft
3 4ft
Inter
Slope
Curve | Unheated 6 | 11 flr | Infiltrat
ELF Ach
0007(.56)
0005(.40)
0003(.24) | lope/.0016
urve/.0016 | | | 6 | | | | | 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 | ร | | <u>н</u> <u> </u> | νū | | | Sid | | Component
(KBtu) | (/sf)
40.14
18.94
15.93
12.43
10.70
7.70
5.85 | 527.35
12.101
(/ft) | 191.47
116.31
94.64
98.81
67.64
.000
748.76 | (/sf) | 26.84
4.51
-1.75
-2.30
-3.90
-7.557
500.72 | (/sf)
177.02
80.00
50.66
16.15 | 881.48
-6.679 | | | Prototype | | elta Com
(MBtu) | .00
-6.72
-7.68
-8.78
-9.33
-10.87 | (DD) 7
(DDS) - | -10.36
-12.62
-13.27
-13.14
-14.08
(CDD) 6 | | .00
-13.40
-15.69
-17.15
-17.48
-18.44
(DD) 7
(DD) 7 | . 00
-13.97
-18.20
-23.16 | (DD) 6
(DDS) 6
(DDS) | Btu
Btu | | MApartment | beog 60 | ۵ | ¥a - 1
R - 0
R - 1
R - 13
R - 19
R - 27
R - 34 | Slope
Curve | 4ft
8ft
8 4ft
Inter
Curve | - we | 0 # | Window U-va
1-Pane
2-Pane
3-Pane
R-10 | Slope
Curve | 31.73 MI
2.94 MI | | MAp | eating | | | Ĭ | ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ | Ü | жжжж
111111 | (;
.:.w | | н н | | TMY | Ï | omponent
(KBtu) | (,sf)
16.13
18.13
18.77
19.57
19.57
19.55
19.55
19.55
19.55
19.55
19.55
19.55
19.55
19.55
19.55
19.55
19.55
19.55
19.55
19.55
19.55
19.55
19.55
19.55
19.55
19.55
19.55
19.55
19.55
19.55
19.55
19.55
19.55
19.55
19.55
19.55
19.55
19.55
19.55
19.55
19.55
19.55
19.55
19.55
19.55
19.55
19.55
19.55
19.55
19.55
19.55
19.55
19.55
19.55
19.55
19.55
19.55
19.55
19.55
19.55
19.55
19.55
19.55
19.55
19.55
19.55
19.55
19.55
19.55
19.55
19.55
19.55
19.55
19.55
19.55
19.55
19.55
19.55
19.55
19.55
19.55
19.55
19.55
19.55
19.55
19.55
19.55
19.55
19.55
19.55
19.55
19.55
19.55
19.55
19.55
19.55
19.55
19.55
19.55
19.55
19.55
19.55
19.55
19.55
19.55
19.55
19.55
19.55
19.55
19.55
19.55
19.55
19.55
19.55
19.55
19.55
19.55
19.55
19.55
19.55
19.55
19.55
19.55
19.55
19.55
19.55
19.55
19.55
19.55
19.55
19.55
19.55
19.55
19.55
19.55
19.55
19.55
19.55
19.55
19.55
19.55
19.55
19.55
19.55
19.55
19.55
19.55
19.55
19.55
19.55
19.55
19.55
19.55
19.55
19.55
19.55
19.55
19.55
19.55
19.55
19.55
19.55
19.55
19.55
19.55
19.55
19.55
19.55
19.55
19.55
19.55
19.55
19.55
19.55
19.55
19.55
19.55
19.55
19.55
19.55
19.55
19.55
19.55
19.55
19.55
19.55
19.55
19.55
19.55
19.55
19.55
19.55
19.55
19.55
19.55
19.55
19.55
19.55
19.55
19.55
19.55
19.55
19.55
19.55
19.55
19.55
19.55
19.55
19.55
19.55
19.55
19.55
19.55
19.55
19.55
19.55
19.55
19.55
19.55
19.55
19.55
19.55
19.55
19.55
19.55
19.55
19.55
19.55
19.55
19.55
19.55
19.55
19.55
19.55
19.55
19.55
19.55
19.55
19.55
19.55
19.55
19.55
19.55
19.55
19.55
19.55
19.55
19.55
19.55
19.55
19.55
19.55
19.55
19.55
19.55
19.55
19.55
19.55
19.55
19.55
19.55
19.55
19.55
19.55
19.55
19.55
19.55
19.55
19.55
19.55
19.55
19.55
19.55
19.55
19.55
19.55
19.55
19.55
19.55
19.55
19.55
19.55
19.55
19.55
19.55
19.55
19.55
19.55
19.55
19.55
19.55
19.55
19.55
19.55
19.55
19.55
19.55
19.55
19.55
19.55
19.55
19.55
19.55
19.55
19.55
19.55
19.55
19.55
19.55
19.55
19.55
19.55
19.55
19.55
19.55
19.55
19.55
19.55
19.55
19.55
19.55
19.55
19.55
19.55
19.55
19.55
19.55
19.55
19.55
19.55
19.55
19.55
19.55
19.55
19.55
19.55
19.55
19.55
19.55
19.55 | 1892.48
38.017
(/ft) | 91.14
45.97
32.64
37.81
19.31
18.65
666.81 | ; (/sf) | 9.57
2.95
.48
-1.11
-5.574
526.709 | 22.99
15.95
9.28 | 29.526
4.746 | | | - | | () | 55.22
50.34
50.52
50.52
50.52
60.60
60.60
60.60
60.60
60.60
60.60
60.60
60.60
60.60
60.60
60.60
60.60
60.60
60.60
60.60
60.60
60.60
60.60
60.60
60.60
60.60
60.60
60.60
60.60
60.60
60.60
60.60
60.60
60.60
60.60
60.60
60.60
60.60
60.60
60.60
60.60
60.60
60.60
60.60
60.60
60.60
60.60
60.60
60.60
60.60
60.60
60.60
60.60
60.60
60.60
60.60
60.60
60.60
60.60
60.60
60.60
60.60
60.60
60.60
60.60
60.60
60.60
60.60
60.60
60.60
60.60
60.60
60.60
60.60
60.60
60.60
60.60
60.60
60.60
60.60
60.60
60.60
60.60
60.60
60.60
60.60
60.60
60.60
60.60
60.60
60.60
60.60
60.60
60.60
60.60
60.60
60.60
60.60
60.60
60.60
60.60
60.60
60.60
60.60
60.60
60.60
60.60
60.60
60.60
60.60
60.60
60.60
60.60
60.60
60.60
60.60
60.60
60.60
60.60
60.60
60.60
60.60
60.60
60.60
60.60
60.60
60.60
60.60
60.60
60.60
60.60
60.60
60.60
60.60
60.60
60.60
60.60
60.60
60.60
60.60
60.60
60.60
60.60
60.60
60.60
60.60
60.60
60.60
60.60
60.60
60.60
60.60
60.60
60.60
60.60
60.60
60.60
60.60
60.60
60.60
60.60
60.60
60.60
60.60
60.60
60.60
60.60
60.60
60.60
60.60
60.60
60.60
60.60
60.60
60.60
60.60
60.60
60.60
60.60
60.60
60.60
60.60
60.60
60.60
60.60
60.60
60.60
60.60
60.60
60.60
60.60
60.60
60.60
60.60
60.60
60.60
60.60
60.60
60.60
60.60
60.60
60.60
60.60
60.60
60.60
60.60
60.60
60.60
60.60
60.60
60.60
60.60
60.60
60.60
60.60
60.60
60.60
60.60
60.60
60.60
60.60
60.60
60.60
60.60
60.60
60.60
60.60
60.60
60.60
60.60
60.60
60.60
60.60
60.60
60.60
60.60
60.60
60.60
60.60
60.60
60.60
60.60
60.60
60.60
60.60
60.60
60.60
60.60
60.60
60.60
60.60
60.60
60.60
60.60
60.60
60.60
60.60
60.60
60.60
60.60
60.60
60.60
60.60
60.60
60.60
60.60
60.60
60.60
60.60
60.60
60.60
60.60
60.60
60.60
60.60
60.60
60.60
60.60
60.60
60.60
60.60
60.60
60.60
60.60
60.60
60.60
60.60
60.60
60.60
60.60
60.60
60.60
60 |) 8
S) -1 | 3.37
4.73
4.97
4.97
5.53
(t | ement | 6.36
6.77
6.77
6.77
6.77
6.77 | n 88.08
6.45
4.45 | α | ypic
sidu | | on VT | | Delt:
(MB) | 11111111 | 00) | -13
t -14
t -15
t -14
t -15
ercept
ve (DD) | d Bas | -16
-14
-15
-15
-16
-16
-16
-16
-16
-16
-16
-16
-16
-16 | ratio
ch
81)
59) -
36)-1 | .001E
.001E | ₩
• | | Burlington | | | Ce R - 6 - 6 - 6 - 6 - 6 - 6 - 6 - 6 - 6 - | Slop
Curv
Slab | 24
24
0 24
1 1 1 t
5 0 0 | eate | 1 fl
9 fl
8 fl
Int
Slo
Cur | Infiltr
ELF Ac
0007(.8
0005(.8 | ope/
rve/ | | | Bur | | | | | R R R R R R R R R R R R R R R R R R R | Unh | | н
П 9 9 9 9 | S | | | | omponent
(KBtu) |
(\$s')
0.86
1.14
1.14
1.18
1.18
1.18
1.18
1.18
1.18
1.18
1.18
1.18
1.18
1.18
1.18
1.18
1.18
1.18
1.18
1.18
1.18
1.18
1.18
1.18
1.18
1.18
1.18
1.18
1.18
1.18
1.18
1.18
1.18
1.18
1.18
1.18
1.18
1.18
1.18
1.18
1.18
1.18
1.18
1.18
1.18
1.18
1.18
1.18
1.18
1.18
1.18
1.18
1.18
1.18
1.18
1.18
1.18
1.18
1.18
1.18
1.18
1.18
1.18
1.18
1.18
1.18
1.18
1.18
1.18
1.18
1.18
1.18
1.18
1.18
1.18
1.18
1.18
1.18
1.18
1.18
1.18
1.18
1.18
1.18
1.18
1.18
1.18
1.18
1.18
1.18
1.18
1.18
1.18
1.18
1.18
1.18
1.18
1.18
1.18
1.18
1.18
1.18
1.18
1.18
1.18
1.18
1.18
1.18
1.18
1.18
1.18
1.18
1.18
1.18
1.18
1.18
1.18
1.18
1.18
1.18
1.18
1.18
1.18
1.18
1.18
1.18
1.18
1.18
1.18
1.18
1.18
1.18
1.18
1.18
1.18
1.18
1.18
1.18
1.18
1.18
1.18
1.18
1.18
1.18
1.18
1.18
1.18
1.18
1.18
1.18
1.18
1.18
1.18
1.18
1.18
1.18
1.18
1.18
1.18
1.18
1.18
1.18
1.18
1.18
1.18
1.18
1.18
1.18
1.18
1.18
1.18
1.18
1.18
1.18
1.18
1.18
1.18
1.18
1.18
1.18
1.18
1.18
1.18
1.18
1.18
1.18
1.18
1.18
1.18
1.18
1.18
1.18
1.18
1.18
1.18
1.18
1.18
1.18
1.18
1.18
1.18
1.18
1.18
1.18
1.18
1.18
1.18
1.18
1.18
1.18
1.18
1.18
1.18
1.18
1.18
1.18
1.18
1.18
1.18
1.18
1.18
1.18
1.18
1.18
1.18
1.18
1.18
1.18
1.18
1.18
1.18
1.18
1.18
1.18
1.18
1.18
1.18
1.18
1.18
1.18
1.18
1.18
1.18
1.18
1.18
1.18
1.18
1.18
1.18
1.18
1.18
1.18
1.18
1.18
1.18
1.18
1.18
1.18
1.18
1.18
1.18
1.18
1.18
1.18
1.18
1.18
1.18
1.18
1.18
1.18
1.18
1.18
1.18
1.18
1.18
1.18
1.18
1.18
1.18
1.18
1.18
1.18
1.18
1.18
1.18
1.18
1.18
1.18
1.18
1.18
1.18
1.18
1.18
1.18
1.18
1.18
1.18
1.18
1.18
1.18
1.18
1.18
1.18
1.18
1.18
1.18
1.18
1.18
1.18
1.18
1.18
1.18
1.18
1.18
1.18
1.18
1.18
1.18
1.18
1.18
1.18
1.18
1.18
1.18
1.18
1.18
1.18
1.18
1.18
1.18
1.18
1.18
1.18
1.18
1.18
1.18
1.18
1.18
1.18
1.18 | 381.44
63.990
(/ft) | 56666644 | (/sf) | 59
 | (/sf)
-7.28
-6.47
-4.28 | 770.65
18.742 | |--------------|---------------------|--|--|---|----------|--|--|--| | þe | Delta Co
(MBtu) | | oe(DD)
ve(DDS)
Sasement | -2.70
-2.89
-2.85
-2.94
-2.96
rcept
e(DD)
e(DDS) | | .000
.92
.92
.94
.94
.95
.97
.97
.90(DD) | -value
 | • (DD) - • (DDS) - MBtu MBtu | | Cooling Load | | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ | Slope
Curve
Heated Bas | R-6
R-5
R-5
84
R-10
84
Inter
S-10
Cury | Crawi | R-0
R-11 f-r
R-19 f-r
R-38 f-r
R-38 f-r
R-49 f-r
R-50 f-r
R-6
Interc
Slope
Curve | Window U-
1-Pane
2-Pane
3-Pane
R-10 | Slope
Curve
42.15 h
27.51 h
9.38 h | | ŭ | omponent
(KBtu) | (/sf)
8.49
3.05
2.18
1.40
1.17
1.17
67
.67 | 1219.54
35.707
(/ft) | -42.54
-42.18
-41.51
-42.06
-41.21
-39.154
-756.41 | t (/sf) | -2.34
-1.89
80
61
131
-642.35 | (/sf flr)
3.64
2.63
1.60 | 5.422
325
 | | | Delta Co
(MBtu) | -ing
-8.37
-9.71
9 -10.91
2 -11.27
-12.02
9 -12.22 | ((DD) (((((((((((((((((| -6.16
-6.18
-5.99
-6.08
-6.08
-5.94
-6.00) | Ваѕешеп | -2.78
77
33
84
84
(00)
(00) | ration
(ch
53) .00
39) -1.55
23) -3.14 | 001ELF
001ELF
Bas
Typica
Residua | | , | | 0 | Slope
Curve | R-6
R-5 2ft
R-5 4ft
R-10 2ft
R-10 4ft
Intel
Slope | Unheated | R-11 flr
R-19 flr
R-30 flr
Intere Slope | Infiltr
ELF Ac.
.0007(.5
.0005(.3 | Slope/ | | | Component
(KBtu) | (/sf)
12.25
5.71
4.78
3.64
3.08
1.75 | 2195.23
15.391
(/ft) | 52.82
35.23
36.23
31.01
24.81
16.943
414.18 | (/sf) | 10.29
3.10
2.00
1.43
1.30
.000
766.58 | (/sf)
45.91
15.99
9.85
2.62 | 054.92
25.920 | | סר | Delta Cor
(MBtu) | .00
-7.35
-8.40
-9.67
-10.30
-11.82 | e(DD)
e(DDS)
asement | -7.08
-10.00
-10.81
-10.70
-11.73
rcept
e(DD) 1 | | .008
-11.08
-12.77
-13.64
-13.84
-14.41
copt
e(DD) 1 | -value
.000
-5.53
-6.67 | (DD) 1
(DDS) 1
Btu
Btu
Btu | | ating Loa | | Wall
R-0
R-13
R-13
R-13
R-34
R-34 | Slop
Curv
Heated B | R-6
R-5
R-5
R-10
R-10
R-10
S-10
S-10
Cury | Crawl | R-6
R-11 flr
R-19 flr
R-30 flr
R-49 flr
Inter
Slope
Curve | Window U-
1-Pane
2-Pane
3-Pane
R-10 | Slope
Curve
63.26 M
22.94 M
18 M | | ₩
₩ | omponent
(KBtu) | (/sf)
14.45
5.69
4.29
3.04
1.95
1.54
1.64 | 2809.71
-62.746
(/ft) | 34.2
22.1
19.3
20.1
16.6
10.1
14.1
891.6 | : (/sf) | 5.6
2.56
1.86
1.36
7.76.59 | (/sf flr)
5.79
3.67
1.93 | 5.032
4.627
4.627
Coad III | | | Deita Cor
(MBtu) | ing
-13.65
-17.65
-17.58
-18.31
-19.39
-28.36 | (00)
(008) | -10.16
-12.17
-12.64
-12.50
-13.09
rcept
e(DD) 1 | Basement | -7.08
-11.88
-13.08
-13.85
-13.85
e(DD) 1 | ation (h
h | Ø1ELF
Ø1ELF
Bas
Typica
Residua | | | | 0 | Slop
Curv | R-6
R-5 2ft
R-10 2ft
R-10 2ft
S-10 4ft | Unheated | R-0
R-11
R-13
R-19
F-7
T-1
S-0
S-0
C-1 | Infiltra
ELF Act
.0007(.77
.0005(.53 | Slope/.0
Curve/.0 | One Story Prototype Siding WYEC Charleston SC | Cooling Load | Component
J) (KBtu) | (/sf) Wali (/sf)
.00 7.80 R-0 .00 3.03
.09 2.64 R-793 1.08
.59 1.82 R-11 -1.06 .80
.03 1.08 R-13 -1.17 .58
.13 .92 R-19 -1.22 .47
.71 R-27 -1.29 .33
.33 .58 R-34 -1.33 .24
.49 .31 | 913.36 Slope(DD) 254.05
) 67.726 Curve(DDS) 57.458
(/ft) Heated Basement (/ft) | .22 -75.26 R-078 -3 -3 -13 -74.51 R-5 4ft79 -3 -3 -13 -73.01 R-5 8ft78 -3 -3 -18 -72.76 R-10 8ft81 -4 -59.110 Intercept -36 -1304.48 Slope(DD) -22 67.956 Curve(DDS) 4 | ment (/sf) Crawl (/sf) | .78 -2.62 R-0 .00 -1.32
.02 -1.35 R-11 flr .6228
.2198 R-19 flr .6720
.3573 R-30 flr .7212
R-38 flr .7212
R-49 flr
.7605
078 Intercept .000
-894.86 Slope(DD) -136.58
77.946 Curve(DDS) -23.441 | (/sf flr) Window U-value (/sf) 00 2.94 1-Pane .00 -14.41 02 2.09 2-Pane .36 -11.91 03 1.25 3-Pane .94 -7.85 R-10 1.63 -3.09 | # 1.125 Slope(DD) -1387.35
.104 Curve(DDS) 31.881
Base Load = 28.06 MBtu
ical Load = 22.57 MBtu
dual Load = 11.94 MBtu | |-----------------------|----------------------------------|---|--|--|-------------------------|---|---|--| | Siding Series Two | Delta
(MBt | Sf) Ceiling .48 .81 .86 .87 .88 .89 .73 .73 .73 .73 .74 .75 .75 .75 .75 .75 .75 .75 .75 .75 .75 | .34 Slope(DD)
731 Curve(DDS)
ft) Slab | .90 R-6 -2.
.65 R-5 2ft -2.
.90 R-10 2ft -2.
.90 R-10 2ft -2.
.65 R-10 4ft -2.
.65 R-10 4ft -2.
.65 Slope(DD)
.65 Slope(DD) | sf) Unheated Basem | 81 R-0
43 R-11 flr -
54 R-19 flr
10 R-30 flr
99 Intercept
84 Slope(DD)
91 Curve(DDS) | f) Infiltration
ELF Ach
85 .0007(.53) .
25 .0005(.39) -1.
12 .0003(.24) -2. | 69 Slope/.001ELF
28 Curve/.001ELF
Typ | | Mid Town Prototype | Delta Component
(MBtu) (KBtu) | Wall
R-0
R-7
R-11
R-13
R-13
R-13
R-27
R-53
R-27
R-65
R-34
R-65
R-13
R-34
R-65
R-13 | Slope(DD) 1582.
Curve(DDS) 102.7
Heated Basement (/f | R-6
R-5 4ft -4.30 24.
R-5 8ft -4.46 20.
R-10 4ft -4.45 20.
R-10 8ft -4.62 16.
Intercept 8.4
Slope(DD) 715.
Curve(DDS) 5.4 | Crawl (/s | R-0
R-11 flr -3.83 2.
R-19 flr -4.36 1.
R-36 flr -4.63 1.
R-38 flr -4.63 1.
R-49 flr -4.87 .
Intercept .0
Slope(DD) 1315.
Curve(DDS) 78.4 | Window U-value (/s
1-Pane .00 39.
2-Pane -3.83 13.
3-Pane -4.57 8.
R-10 -5.44 2. | Slope(DD) 819.
Curve(DDS) 26.1
28.75 MBtu
11.51 MBtu
2.89 MBtu | | Charleston SC WYEC He | Delta Component
(MBtu) (KBtu) | Ceiling (/sf) R-0 R-0 R-7 -5.67 R-11 -6.58 3.99 R-19 -7.39 2.64 R-22 -7.65 2.21 R-38 -8.20 1.29 R-49 -8.35 1.65 R-60 -8.44 | Slope(DD) 2342.91
Curve(DDS) 30.303
Slab (/ft) | R-0
R-5 2ft -4.79 12.40
R-5 4ft -4.87 10.40
R-10 2ft -4.84 11.15
R-10 4ft -4.93 8.90
Intercept 6.010
Slope(DD) 606.02
Curve(DDS) 85.990 | Unheated Basement (/sf) | R-0
R-11 fir -4.49 1.33
R-19 fir -4.75 .89
R-30 fir -4.92 .61
Intercept135
Slope(DD) 1008.29
Curve(DDS) -77.650 | Infiltration (/sf flr)
ELF Ach
.0007(.74) .00 4.35
.0005(.53) -2.39 2.35
.0003(.32) -4.06 .96 | Slope/.001ELF .958
Curve/.001ELF 7.500
Base Load = Typical Load = Residual Load = | | Cooling Load | Delta Component
(MBtu) (KBtu) | Wall (/sf) R-0 .00 2.48 R-761 .56 R-1169 .29 R-1374 .14 R-1976 .07 R-2778 .03 R-3478 .00 | Slope(DD) -83.82
Curve(DDS) 1Ø1.357
Heated Basement (/ft) | R-Ø60 -46.54 R-5 4ft59 -46.04 R-16 4ft60 -46.54 R-10 8ft59 -46.21 Intercept -46.593 Slope(DD) 41.13 Curve(DDS) -1.014 | Crawl (/sf) | R-0 .00 -1.32 R-11 flr .7605 R-19 flr .7900 R-30 flr .80 .02 R-49 flr .80 .02 R-49 flr .81 .04 Intercept .04 Slope(DD) .75.03 Curve(DDS) -64.782 |) Window U-value (/sf)
1-Pane .00 -13.87
2-Pane .35 -11.44
3-Pane .91 -7.54
R-10 1.57 -2.96 | Slope(DD) -1331.57
Curve(DDS) 30.544
= 25.65 MBtu
= 21.06 MBtu
= 10.78 MBtu | |--------------|-----------------------------------|---|--|---|-------------------------|---|---|---| | | Delta Component
(MBtu) (KBtu) | Ceiling (/sf) R-0 .000 7.100 R-7 .2.79 2.45 R-11 .3.23 1.71 R-19 .3.64 1.04 R-22 .3.74 .87 R-38 .3.95 .55 R-49 .4.02 .40 R-60 .4.06 .33 | Slope(DD) 882.25
Curve(DDS) 53.184
Slab (/ft) | R-Ø -1.61 -80.04 R-5 2ft -1.58 -79.04 R-5 4ft -1.58 -79.88 R-10 2ft -1.60 -79.71 R-10 4ft -1.55 -78.04 Intercept -75.592 Slope(DD) -970.47 Curve(DDS) 51.829 | Unheated Basement (/sf) | R-060 -2.33 R-11 flr .13 -1.11 R-19 flr .2885 R-30 flr .3869 Intercept263 Slope(DD) -560.76 Curve(DDS) 30.871 | Infiltration (/sf flr
ELF Ach
.0007(.53) .00 2.72
.0005(.39) -1.01 1.88
.0003(.23) -1.97 1.09 | Slope/.001ELF 3.417
Curve/.001ELF .677
Base Load :
Typical Load :
Residual Load : | | ating Load | Delta Component
(MBtu) (KBtu) | Wall (/sf) R-0 .00 11.26 R-7 -2.13 4.55 R-11 -2.43 3.60 R-13 -2.73 2.65 R-19 -2.88 2.18 R-27 -3.07 1.57 R-34 -3.19 1.20 | Slope(DD) 1399.24
Curve(DDS) 129.276
Heated Basement (/ft) | R-Ø -4.16 45.74
R-5 4ft -4.89 21.41
R-5 8ft -5.00 17.57
R-10 4ft -4.99 17.91
R-10 8ft -5.14 12.91
Intercept 4.949
Slope(DD) 670.13
Curve(DDS) 9.492 | Crawl (/sf) | R-0
R-11 flr -4.13 2.34
R-19 flr -4.68 1.41
R-3Ø flr -4.91 1.03
R-3Ø flr -4.97 .94
R-49 flr -5.12 .68
Intercept .000
Slope(DD) 1182.85
Curve(DDS) 119.695 | Window U-value (/sf) 1-Pane .00 39.09 2-Pane -3.88 12.18 3-Pane -4.56 7.39 R-10 -5.38 1.76 | Slope(DD) 678.32
Curve(DDS) 30.392
26.98 MBtu
10.66 MBtu
3.22 MBtu | | Неа | Delta Component.
(MBtu) (KBtu) | Ceiling (/sf) R-0 R-7 R-1 R-11 R-56 R-13 R-12 R-22 R-38 R-38 R-38 R-38 R-38 R-38 R-38 R-38 | Slope(DD) 2098.79
Curve(DDS) 64.225
Slab (/ft) | R-0 -4.81 24.07
R-5 2ft -5.15 12.74
R-5 4ft -5.20 10.91
R-10 2ft -5.18 11.57
R-10 4ft -5.25 9.41
Intercept 7.347
Slope(DD) 253.31
Curve(DDS) 119.272 | Unheated Basement (/sf) | R-0
R-11 flr -4.94 .97 .
R-19 flr -5.15 .62
R-30 flr -5.29 .40
Intercept204
Slope(DD) 812.27
Curve(DDS) -63.658 | Infiltration (/sf flr)
ELF Ach
.0007(.74) .00 4.19
.0005(.53) -2.38 2.21
.0003(.32) -4.00 .85 | Slope/.001ELF .479
Curve/.001ELF 7.865
Base Load = Typical Load = Residual Load ≈ | MApartment Prototype Siding WYEC Charleston SC | 1 | | | | | | | | | | | | | | | | |--------------------|-------------|----------------------------------|--------|----------|-------------|---------------|--------------|--------------|------------|---------------|------------|---------------------------------------|------------------|------------|-----------------------------|------------------|------------------|-----------------|------------------------|-----------------|----------------------|----------------|------------------------------|--------------------------------|--------------|----------------------|--------------------------|--------------------|-----------|-----------------------|----------------------|---------|-----------------------------------|---| | | | omponent
(KBtu) | | /st | 1 | | 4 | ε. | .26 | Ņ. | | 258.34 | 14. | - | .33 | 4. | | ن س | | 70 | (/sf) | 1 11 | 1.44 | 1.46 | 1.48 | _ | -16.16
18 808 | ; ; | | 1.37 | .50 | - | 78.54
940 | | | | ooling Load | Delta (
(MBtu) | | - 62 | -1 | -111 | -13 | -19 -1. | R-27 -1.16 | · T = +0- | | Slope(DD)
Curve(DDS) | Heated Basement | | -1.7 | -5 4ft -1.8 | -3 67 C -1 | -10 8ft -1.8 | Intercept
Slope(DD) | | Crawl | 6- | -11 fir .4 | R-19 flr . 45
R-30 flr . 47 | -38 fir .4 | -49 fir
Intercent | (66) | | | -Pane .0 | 2-Pane11
3-Pane16 | -102 | Slope(DD)
Curve(DDS) | 9.30 MBtu
1.40 MBtu
-1.81 MBtu | | es Two | ů | Delta Component
(MBtu) (KBtu) | 3-// | .80 | -3.26 1.3 | 1 -3.78 .9 | 9 -4.25 .6 | 4.41 .5 | 8 -4.76 34 | 9 -4.86 .2 | 9 -4.93 .2 | 600) 606.82
(600S) -4.882 | (/ft) | ; | -2.35 -3.2 | -2.10 -2.2 | -2.15 -2.0 | -2.05 -1.4 | G(DD) | •(DDS) 16.26 | Basement (/sf) | 9. 22. | 7. 27 | 42 .90 | | apt 1.35 | 0) -459
00S) 39. | ation (/sf flr) | ; | 88. | 5)15 .06 | | 001ELF .162
001ELF .081 | Base Load = Typical Load = Residual Load = | | Siding Seri | | nent
Btu) | /sf) (| 9.93 | 9.55 R-7 | 5.65
R-1 | 3.11 R-1 | 1.33 K-2 | 23 8-3 | 4 | φ | 9.91 Slop. | /ft) Slab | (| 7 - 6
- 7 - 6
- 7 - 6 | .63 R-5 4f | .21 R-1 | .84 R-10 4f | 0000 Int | טֿמ | sf) Unheated | .37 R-Ø | R-11 #1 | e œ | . 68 | | Slop | sf) Infiltr | ELF A | 71 0001(.
71 000E(| .54 .0003 (.25) | 70. | .54 Slope/.6
196 Curve/.6 | | | ne Story Prototype | ting Load | Delta Compone
(MBtu) (KBt | e | ٦, | -/ -22.90 | -11 -26.16 | -10 -30.14 | -27 -35.68 | -34 -37.8 | | | Slope(DD) 812
Curve(DDS) -131 | eated Basement (| 6 | -13.5/ 12
ft -20.01 8 | 8ft -22.56 7 | 3 4ft -21.80 7 | 9 8ft -25.68 5 | Cept
(DD) 592 | urve(UUS) -69 | /) me_ | 2 88. | 1 fir -35.06
9 fir -40 07 | -30 flr -44.60 -6.59 | 9 fir -47.82 | Intercept | ope(UD)
7
rve(DDS) -1 | indow U-value (/ | Q. 000 | -Pane -19.64 9 | -25 | 1 00:30 | Slope(DD) 7915
Curve(DDS) -17. | 05.76 MBtu
66.85 MBtu
10.64 MBtu | | enne WY WYEC Or | Неа | | //sf | .00 41.6 | -30.40 IO.0 | 12. 12. 12. 1 | 2 -52.26 7.7 | 3 -55.13 5.8 | 92- 6 | 1 - 58.42 3.7 | 9.5 | ope(DD) 8537.23
Irve(DDS) -254.593 | ab (/ft) H | 31 67 11 0 | t -29.78 28.14 R | t -31.72 16.45 R | t -31.68 28.79 R | C -33.08 4.64 K | pe(DD) 11734 | 643.343 (200)2. | ted Basement (/sf) C | -13.57 13.56 R | 8.47 -2.61 R | r -42.00 -4.90 R | < 0< | tercept -11.081 | rve(DDS) -702 | ration (/sf flr) W | 0.69 23.0 | -10.29 16 | -20.47 9.7 | | 7.001ELF 32.338
7.001ELF .893 | Base Load = 2
Typical Load = Residual Load = | | Cheye | | | ŭ, | żο | ć oʻ | e de | à | æ | o'e o | | • | S S | S | R-6 | R-5 2 | <u>ئ</u> | -16 | a | SIN | , | nhea | 9: | 1 1 | -30 | | Ë | | Infilt | | | | į | Slope/
Curve/ | | | | component
(KBtu) | (/sf)
1.47
1.79
. 79
. 69
. 53
. 34 | 349.19
.14.056
(/ft) | -1.15
-1.65
-1.65
-1.65
-1.15
-1.15
-1.500
145.21
2.994 | (/sf) | 111111
0.4444
7.1477 | 5.6
33 | .35
.28
.18 | 32.36
724 | | |--------------|---------------------|--|------------------------------|--|----------|---|-------------------------------|--|------------------------|-------------------------------| | | elta (
(MBtu) | 0.1.1.1.0
0.2.2.3.3.2
0.2.4.3.1.2
0.2.4.5.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1 | (DD)
(DDS) -
sement | 63
65
65
65
65
65
(00)
(DD) | | . 28
. 28
. 38
. 38
. 31 | ercept
(e(DD)
(e(DDS) - | a Lue
 | (800)
(00) | Btu
Btu
Btu | | Cooling Load | ۵ | XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX | Slope
Curve
Heated Bas | R-6
R-5 4ft
R-5 8ft
R-10 4ft
R-10 8ft
Inter
Slope | Crawl | | Intero
Slope
Curve(| Window U-v
1-Pane
2-Pane
3-Pane
R-10 | Slope
Curve | 6.38 MB
3.21 MB
1.26 MB | | Ů | omponent
(KBtu) | (/sf)
3.73
1.51
1.15
1.15
.83
.83
.53
.43 | 780.91
-25.545
(/ft) | -9.15
-7.40
-6.40
-6.90
-5.40
-1.714
-1.714
63.689 | (/sf) | Ø | 1.279
486.64
43.330 | (/sf flr)
.12
.08
.05 | .167 | E Load | | | Deita Cor
(MBtu) | | (saa) | 95
88
84
86
86
(00)
-100S) | Basement | 1 1 1 1 | (00)
(00)
(008) | | IØ1ELF
IØ1ELF | Bas
Typica
Residua | | | ٠ | C | Slope
Curve
Slab | R-6
R-5
2ft
R-5 4ft
R-10 2ft
R-10 4ft
Inter
S-00e | Unheated | R-0
R-11 flr
R-19 flr
R-30 flr | Interce
Slope(C
Curve(C | Infiltrat
ELF Ach
.0007(.59)
.0005(.42)
.0003(.25) | Slope/.06
Curve/.06 | | | | Component
(KBtu) | (/sf)
38.18
17.85
11.95
11.60
9.94
7.17
5.47 | 6980.25
22.190
(/ft) | 142.21
85.21
68.71
72.21
49.46
.000
5300.72 | (/sf) | 0 11110 | -6.31
317.7
27.81 | (/sf)
168.95
68.54
42.94
12.84 | 368.81
39.053 | | | סד | Delta Co
(MBtu) | . 00
- 9.69
- 11.07
- 12.67
- 13.48
- 14.78
- 15.59 | (DD)
(DDS)
sement | -8.32
-10.66
-11.26
-11.12
-12.03
-12.00
(DD) | | .00
-12.71
-14.80
-16.01
-16.29
-17.09 | (00)
(00)
(00) | . 00
-14.46
-18.15
-22.48 | (00)
(008) | 8tu
8tu
8tu | | eating Load | | Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z | Slope
Curve
Heated Ba | R-6
R-5
R-5
R-5
R-10 4ft
R-10 8ft
Inter
Slope
Curve | Crawl | | Slope | Window U-
1-Pane
2-Pane
3-Pane
R-10 | Slope | 97.55 M
27.85 M
7.27 M | | Ŧ | mponent
(KBtu) | (/sf)
43.46
16.81
12.55
8.73
7.73
7.73
5.56
4.46
3.53 | 8Ø21.12
116.428
(/ft) | 60.96
22.21
11.96
15.71
2.46
-23.512
8410.09 | t (/sf) | 4.6.12 | -2.823
6270.04
602.460 | (/sf flr)
20.07
13.58
7.70 | 23.416
7.501 | | | | Deita Co
(MBtu) | - 15 . 99 | (DD)
(DDS) | -11.57
-13.12
-13.53
-13.38
-13.91
-13.91
copt
e(DD) | Basemen | 111 9 | (DDS) -6 | tion
.000
.7.78
.14.84 | 001ELF
001ELF | Bas
Typica
Residua | | | _ | C. B. R. | Slope
Curve | R-6
R-5
2ft
R-5
4ft
R-10 2ft
R-10 4ft
Inter
Slope
Curve | Unheated | | SCOP | Infiltra
ELF Ach
.0007(***
.0005(.71
.0003(.44 | Slope/.0
Curve/.0 | | Mid Town Prototype Siding WYEC Cheyenne WY | Delta Component
(MBtu) (KBtu) | (/sf)
1.35
1.35
1.28 .71
1.30 .47
1.35 .24 | 00 (00) 311.59 (00) -11.316 (1) | 45 -1.36
46 -1.52
46 -1.19
44 -1.62
44 -1.02
orcept .000 | (/sf) | .00 .69
.20 1.02
.21 1.04
.21 1.05
.21 1.05
.21 1.05
.22 1.05
.20 1.05
.20 1.05
.20 1.32
.20 1.32 | -value (/sf) e .00 .78 e05 .40 e08 .26 10 .09 | e(DD) 37.40
e(DDS)296
MBtu
MBtu
MBtu | |----------------------------------|--|--|---
---|---|--|--| | | ************************************** | Slop
Curv
Heated E | R-6
R-5 4ft
R-5 8ft
. R-10 4ft
R-10 8ft
Inte | Crawl | R-0
R-10
R-10
F-10
R-30
F-1
P-30
F-1
C-1
C-1
C-1 | Window
1-Pa
3-Pa
R-10 | Slop
Curv
5.31
2.44
4.46 | | omponent
(KBtu) | (/sf)
3.82
3.82
1.156
1.19
1.19
1.19
1.47
1.47
2.29 | 825.13
-30.492
(/ft) | 7 - 5.36
3 - 4.62
2 - 3.69
9 - 2.69
9 - 2.69
- 859.63
36.148 | nt (/sf) | | .17
.13
.13
.08 | . 313
104
se Load = | | Delta C
(MBtu) | 00 00 00 00 00 00 00 00 00 00 00 00 00 | ve (DD) | | d Baseme | 4-00 | ation
h
9) .0
2)0
5)1 | .001ELF
.001ELF
Base
Typica
Residua | | | | S S S | R-6
R-5
R-16
24
R-10 24
Int | Unheate | R-10
R-11 fl
R-30 fl
Int | Infilt
ELF A
.0007(.
.0005(. | Slope/
Curve/ | | nponent
(KBtu) | (/sf)
38.33
17.55
11.59
9.66
6.27 | 1689.41
81.306
(/ft) | 175.67
105.33
85.17
89.17
61.17
.000
.558.96 | (/sf) | 25.77
3.78
-1.94
-2.82
-7.120
584.06 | (/sf)
169.49
67.41
42.15
12.44 | 179.01
47.010 | | Delta Con
(MBtu) | . 60
- 6.59
- 7.53
- 9.57
- 9.95
- 10.95 | e(DD)
e(DDS)
asement | -10.19
-12.30
-12.91
-12.79
-13.63
-13.63
e(DD) | | -13.19
-15.35
-16.62
-16.92
-17.75
-17.75
-17.75
-100) | -value
.000
-14.700
-18.34 | e(DD) 5
e(DDS)
MBtu
MBtu
MBtu | | | W R R R R R R R R R R R R R R R R R R R | Slop
Curv
Heated B | R-6
R-5
R-5
8ft
R-10 4ft
R-10 8ft
Inte
Slop | Crawl | R-0
R-11
R-19 f-1
R-30 f-1
R-49 f-1
Inte | Window U | Slope
Curve
92.10 N
25.49
N
7.54 N | | mponent
(KBtu) | (/sf)
42.00
15.98
11.83
8.10
8.10
5.11
4.08 | 7363.18
-47.151
(/ft) | 88.83
46.67
34.50
39.17
22.83
-10.766
1278.88 | t (/sf) | 8.78
2.60
.31
-1.17
-5.307
5718.72 | (/sf flr)
19.80
13.33
7.50 | 22.562
8.177
8.177
6 Load = 1 Load = 1 Load = 1 | | Delta Co
(MBtu) | Ceiling
R-0
R-7 .000
R-11 -18.10
R-19 -20.34
R-22 -21.11
R-30 -22.13
R-49 -23.25
R-60 -23.57 | Slope(DD)
Curve(DDS)
Slab | 2ft -14.06
4ft -14.43
2ft -14.28
4ft -14.28
intercept :
3lope(DD) 1 | Ва | 1 flr -13.98
9 flr -15.28
0 flr -16.16
Intercept
Slope(DD)
Curve(DDS) - | | Slope/.001ELF Curve/.001ELF Base Typical | | | Component Delta Component Delta Component Delta C
1) (KBtu) (MBtu) (KBtu) (MBtu) | Delta Component Delta Component (MBtu) (KBtu) (MBtu) (KBtu) (MBtu) (MBtu | Delta Component (MBtu) (MBtu) (KBtu) (MBtu) (KBtu) (MBtu) | MBtu | Delta Component (MBtu) (KBtu) | Watu (KBtu) | 18 18 18 18 18 18 18 18 | | Cooling Load | Delta Component
(MBtu) (KBtu) | Wall
R-0 2.61
R-7 -1.45 1.32
R-11 -1.66 1.14
R-13 -1.95 .88
R-19 -2.09 .75 | -2.7 -2.31
-34 -2.45
lope(DD) 580
urve(DDS) -13. | -0 -2.89 2 -5 4ft -3.17 -5 8ft -3.16 -10 4ft -3.26 -10 8ft | Crawl (/sf) R-0 .00 2.14 R-11 flr .88 2.71 R-19 flr .94 2.75 R-38 flr 1.02 2.80 R-38 flr 1.09 2.82 R-49 flr 1.09 2.85 Intercept 2.872 Slope(DD) -80.06 Curve(DDS) -12.173 | Window U-value (/sf) 1-Pane .00 2.43 2-Pane25 1.08 3-Pane32 .68 R-1041 .22 | Slope(DD) 91.81
Curve(DDS) .016
20.33 MBtu
6.98 MBtu
-1.96 MBtu | |--------------|----------------------------------|---|--|--|---|--|---| | Coo | Delta Component
(MBtu) (KBtu) | Ceiling (/sf) R-0 .00 5.42 R-7 -5.00 2.17 R-11 -5.80 1.65 R-19 -6.52 1.18 R-22 -6.79 1.01 | -38 -7.15
-38 -7.37
-49 -7.59
-60 -7.74
lope(DD) 1111
urve(DDS) -33. | Slab (/ft) 2ft -4.58 -7.72 2ft -4.37 -6.46 4ft -4.21 -5.49 2ft -4.31 -6.10 1ntercept -4.11 -4.89 Slope(DD) -984.39 Curve(DDS) 41.750 | Unheated Basement (/sf) (R-0 | Infiltration (/sf flr) WELF Ach
.0007(.58) .00 .98
.0005(.42)47 .68
.0003(.25)91 .39 | Slope/.001ELF 1.234
Curve/.001ELF .244
Base Load =
Typical Load =
Residual Load = | | Heating Load | Delta Component
(MBtu) (KBtu) | Wall
R-0
R-7 -18.92 16.01
R-11 -21.61 13.62
R-13 -24.87 10.72
R-19 -26.48 9.28 | -27 -23.48 5.0
-34 -31.20 5.0
lope(DD) 6627.8
urve(DDS) -96.87 | -0 -16.35 116.9 -5 4ft -23.03 76.7 -5 8ft -25.20 63.6 -10 4ft -24.79 66.11 -10 8ft -28.14 45.9 Intercept -28.14 45.9 Slope(DD) 4723.4 Curve(DDS) -45.20 | Crawl (/sf) R-0 .00 23.22 R-11 flr -29.71 3.93 R-19 flr -34.79 .63 R-30 flr -38.74 -1.93 R-38 flr -38.74 -1.93 R-49 flr -40.86 -3.31 Intercept -6.456 Slope(DD) 6450.79 Curve(DDS) -129.310 | 1-Pane .00 158.16
2-Pane -15.65 73.47
3-Pane -20.61 46.64
R-10 -26.44 15.08 | Slope(DD) 6453.57
Curve(DDS) -17.531
= 178.08 MBtu
= 56.12 MBtu | | Ĭ. | Delta Component
(MBtu) (KBtu) | Ceiling (/sf) R-0 34.40 R-7 -31.83 13.73 R-11 -36.91 10.43 R-19 -41.47 7.47 R-22 -43.23 6.33 | -30 -45.59 4.0
-38 -47.01 3.8
-49 -48.27 3.0
-60 -49.09 2.5
lope(DD) 6977.5
urve(DDS) -198.30 | Slab | Unheated Basement (/sf) R-0 R-11 flr -30.76 3.25 R-19 flr -34.83 .60 R-30 flr -37.45 -1.10 Intercept -5.678 Slope(DD) 6233.26 Curve(DDS) -520.246 | Infiltration (/sf flr)
ELF Ach
.0007(.89) .00 21.74
.0005(.64) -9.79 15.38
.0003(.39)-19.40 9.14 ' | Slope/.001ELF 30.032
Curve/.001ELF 1.461
Base Load =
Typical Load =
Residual Load = | One Story Prototype Siding WYEC Chicago IL | (MBtu) (KBtu) (MBtu) (KBtu) (Mstu) (KBtu) (Sf) (Sf) (Sf) (Sf) (Sf) (DS) (DS) (DS) (DS) (Sf) (Sf | tr
tr
tr | |---|--| | | ֓֞֜֞֜֜֜֜֞֜֜֞֜֜֜֜֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓ | | Control Cont | 3.70 MB
8.70 MB
3.26 MB | | | | |
(/sf)
(/sf)
(/sf)
(/sf)
(/sf)
(/sf)
(/ft)
(/ft)
(/ft)
(/ft)
(/ft)
(/sf)
(/sf)
(/sf)
(/sf)
(/sf)
(/sf)
(/sf)
(/sf)
(/sf)
(/sf)
(/sf)
(/sf)
(/sf)
(/sf)
(/sf)
(/sf)
(/sf)
(/sf)
(/sf)
(/sf)
(/sf)
(/sf)
(/sf)
(/sf)
(/sf)
(/sf)
(/sf)
(/sf)
(/sf)
(/sf)
(/sf)
(/sf)
(/sf)
(/sf)
(/sf)
(/sf)
(/sf)
(/sf)
(/sf)
(/sf)
(/sf)
(/sf)
(/sf)
(/sf)
(/sf)
(/sf)
(/sf)
(/sf)
(/sf)
(/sf)
(/sf)
(/sf)
(/sf)
(/sf)
(/sf)
(/sf)
(/sf)
(/sf)
(/sf)
(/sf)
(/sf)
(/sf)
(/sf)
(/sf)
(/sf)
(/sf)
(/sf)
(/sf)
(/sf)
(/sf)
(/sf)
(/sf)
(/sf)
(/sf)
(/sf)
(/sf)
(/sf)
(/sf)
(/sf)
(/sf)
(/sf)
(/sf)
(/sf)
(/sf)
(/sf)
(/sf)
(/sf)
(/sf)
(/sf)
(/sf)
(/sf)
(/sf)
(/sf)
(/sf)
(/sf)
(/sf)
(/sf)
(/sf)
(/sf)
(/sf)
(/sf)
(/sf)
(/sf)
(/sf)
(/sf)
(/sf)
(/sf)
(/sf)
(/sf)
(/sf)
(/sf)
(/sf)
(/sf)
(/sf)
(/sf)
(/sf)
(/sf)
(/sf)
(/sf)
(/sf)
(/sf)
(/sf)
(/sf)
(/sf)
(/sf)
(/sf)
(/sf)
(/sf)
(/sf)
(/sf)
(/sf)
(/sf)
(/sf)
(/sf)
(/sf)
(/sf)
(/sf)
(/sf)
(/sf)
(/sf)
(/sf)
(/sf)
(/sf)
(/sf)
(/sf)
(/sf)
(/sf)
(/sf)
(/sf)
(/sf)
(/sf)
(/sf)
(/sf)
(/sf)
(/sf)
(/sf)
(/sf)
(/sf)
(/sf)
(/sf)
(/sf)
(/sf)
(/sf)
(/sf)
(/sf)
(/sf)
(/sf)
(/sf)
(/sf)
(/sf)
(/sf)
(/sf)
(/sf)
(/sf)
(/sf)
(/sf)
(/sf)
(/sf)
(/sf)
(/sf)
(/sf)
(/sf)
(/sf)
(/sf)
(/sf)
(/sf)
(/sf)
(/sf)
(/sf)
(/sf)
(/sf)
(/sf)
(/sf)
(/sf)
(/sf)
(/sf)
(/sf)
(/sf)
(/sf)
(/sf)
(/sf)
(/sf)
(/sf)
(/sf)
(/sf)
(/sf)
(/sf)
(/sf)
(/sf)
(/sf)
(/sf)
(/sf)
(/sf)
(/sf)
(/sf)
(/sf)
(/sf)
(/sf)
(/sf)
(/sf)
(/sf)
(/sf)
(/sf)
(/sf)
(/sf)
(/sf)
(/sf)
(/sf)
(/sf)
(/sf)
(/sf)
(/sf)
(/sf)
(/sf)
(/sf)
(/sf)
(/sf)
(/sf)
(/sf)
(/sf)
(/sf)
(/sf)
(/sf)
(/sf)
(/sf)
(/sf)
(/sf)
(/sf)
(/sf)
(/sf)
(/sf)
(/sf)
(/sf)
(/sf)
(/sf)
(/sf)
(/sf)
(/sf)
(/sf)
(/sf)
(/sf)
(/sf)
(/sf)
(/sf)
(/sf)
(/sf)
(/sf)
(/sf)
(/sf)
(/sf)
(/sf)
(/sf)
(/sf)
(/sf)
(/sf)
(/sf)
(/sf)
(/sf)
(/sf)
(/sf)
(/sf)
(/sf)
(/sf)
(/sf)
(/sf)
(/sf)
(/sf)
(/sf)
(/sf)
(/sf)
(/sf)
(/sf)
(/sf)
(/sf)
(/sf)
(/sf)
(/sf)
(/sf)
(/sf)
(/sf)
(/sf)
(/sf)
(/sf)
(/sf)
(/sf)
(/sf)
(/sf)
(/sf)
(/sf)
(/sf)
(/sf)
(/sf)
(/sf)
(/sf)
(/sf)
(/sf)
(/sf)
(/sf)
(/sf)
(/sf)
(/sf)
(/sf)
(/sf)
(/sf)
(/sf)
(/sf)
(/sf)
(/sf)
(/sf)
(/sf) | se Load
al Load
al Load | | Copt | Bas
Typics
Residus | | Series Ceilin R-0 R-0 R-11 R-11 R-13 R-13 R-13 R-14 R-18 Slope Curve Curve Curve Curve Slope Curve Curve Slope Curve Curve Curve Curve Slope Curve | | | onent
(/sf)
32.12
32.12
15.18
12.77
12.77
9.68
6.18
4.69
4.69
4.69
7.88.34
7.31
13.993
(/ft)
(/ft)
(/ft)
(/ft)
13.993
(/ft)
(/ft)
(/ft)
139.18
83.18
83.18
83.18
67.68
788.34
788.34
788.34
788.34
(/sf)
(/sf)
(/sf)
(/sf)
(/sf)
(/sf)
(/sf)
23.88
61.26
(/sf)
(/sf)
(/sf)
(/sf)
143.23
61.22
61.22
38.56
143.23
61.22
38.56
11.91
11.91 | | | | M8tu
M8tu
M8tu | | id Town Wall Wall R-0 R-0 R-13 R-13 R-13 R-13 R-13 R-13 R-27 R-27 R-34 R-27 R-34 R-34 R-27 R-34 | 86.28 MB
25.45 MB
1.18 MB | | MYEC M Hean mponent (KBtu) (/sf) 35.96 13.92 13.92 16.41 7.25 6.12 4.62 3.71 2.93 2.43 668.93 3.71 2.93 3.71 2.93 3.71 2.93 3.71 2.93 3.71 2.93 3.71 2.93 3.71 2.93 3.71 2.93 3.71 2.93 3.71 2.93 3.71 2.93 3.71 2.93 3.71 2.93 3.71 2.93 3.75 68.93 3.71 2.93 3.71 2.93 3.75 68.93 | 222 | | Chicago IL (MBtu) (Geiling R-0 R-0 R-13.22 R-13.22 R-13.22 R-19.35 R-19.35 R-38 -19.35 R-38 -19.35 R-38 -19.35 R-38 -19.35 R-49 -19.82 R-9 -19.82 R-19 4ft -12.95 R-10 4ft -12.95 R-10 4ft -13.73 R-10 4ft -13.73 R-10 4ft -13.33 R-10 4ft -13.35 Intercept Slope(DD) Curve(DDS) | T, Res | | | | omponent
(KBtu) | (/sf)
2.24 | - 0 | ~ (| D A | m 1 | | 486.69
-13.186 | (/ft) | | . 78 | 05 | . 55 | .00. | -50.24
1.724 | (/sf) | 1.43 | 2.17 | 2.27 | 2.44 | $^{\circ}$ | 2,5 | 15. | (/sf) | 1.6 | σ. | -1.29 | .245.39
6.928 | | |------------|-------------|---------------------------|---|------|-------|-------------|-------------|------------------|---------------------|------------|-----|------------------|--------|---------|-------------------|---------------------|----------|------|---------|--------------|----------|------------|------------|---|----------------|--------------|-------|------------------|----------------------------|---| | | P | Delta Com
(MBtu) | ė, | 1 1 | 1 - | 1 1
4 11 | | | (SQQ)
(DDS) | asement | • | | 8. | φ. ο | ı.o
rcept | (SQQ)
(DDS) | | .00 | • | • | | • | 0 c | (500) | -value | ø | e04 | . 16 | • (DD)
• (DDS) | MBtu
MBtu
MBtu | | | Cooling Loa | | . 8a - | 77 | R-13 | ٦ ، | 3 6 | | Slop | Heated B | , | R-0
R-5 4ft | ω
φ | 4 6 6 | - 16
In | Slop | Crawl | 9 | -11 fl | -19 4 | R-38 flr | -49 fl | | 200 | Window U | -Pan | -Pan | 3-Pan
R-10 | Slop | 12.06
7.68
2.56 | | | ος | omponent
(KBtu) | (/sf)
4.96 | ۰ m | 9.0 | 7 O | . 4. | . 328 | 855.31
-3.111 | (/ft) | • | -13.22
-11.39 | | -10.55 | ניז ו | 652.06
71.558 | (/sf) | ø | ö | 1.36 | | | 2.1 | 79.250 | /sf flr) | .67 | .45 | . 25 | . 365 | Load III | | Two | | (MBtu) | ø. | 0.0 | -2.41 | ν.
ο α | 2.7 | 2.7 | (S00) | | 6 | 28 | .15 | 8 5 | -1.12
cept | (00)
(008) | Basement | œ | 25 | 60.
44.00 | | • | Sept. | (500) | tion (/ | ø. | · | 2 | 01ELF
01ELF | Base
Typica
Residua | | Series | | ۵ | Ce : | 77 | R-19 | 7 6 |) (P) | 4-0 | Slope | Slab | | R-0
R-5 2ft | -5 4f | -10 2f | -10 41t
Inter | | Unheated | 6 | -11 f | R-19 + r | - | • | Inter | 9 × × × × × × × × × × × × × × × × × × × | t. | .0007 (.58 | ت | ت. | Slope/.0018
Curve/.0018 | | | e Siding | | Component
(KBtu) | (/sf)
32.45 | 9 0 | 8.6 | 4 0 | òά | | 91.16
6.534 | (/ft) | | 9 2 | ယာ | ດາຈ | ņ. | 37.97
2.913 | (/sf) | • | ó | 3.20 | 77. | , | ω.
4. 4 | 2.8 | (/sf) | 4.4 | 60.8 | 38.28
11.73 | 38.34
Ø.127 | | | Prototyp | | elta Comp
(MBtu) (| øi, | 9 | -7.17 | ۳ ب | 9.00 | | (DD) 58
(DDS) 2 | sement | | -10.35 1 | σ, | ∞ n | -13.50
apt | (DD) 63
(DDS) -3 | | ø | | <u> ۲</u> | -14.74 | . 52 | ď | _ | value · | | 12.03 | -15.28
-19.10 | (DD) 49
(DDS) 2 | MBtu
MBtu
MBtu | | MApartment | ing Load | ۵ | Wa-1 | 77 | 1 | ٦٠, | 1 1 | | Slope | Heated Bas | ١ | R-6
R-5 4ft | -5 8 | -10 44 | -10 of t
Inter | Slope | Crawi | 9- | -11 fir | 114 661 | ـ ـ | -49 flr | ter | | Window U- | -Pan | 4 | 3-Pane
R-10 | Slope | 81.94 ME
23.45 ME
1.25 ME | | WYEC MA | Heati | (KBtu) | (/sf)
35.26 | 0 G | .0. | مند | . 13 | ໝຸ ຕຸ | 177.18
39.410 | (/ft) H | . 1 | 83
99 | 9.33 | 3.00 | 603
. 603 | 534.83
98.337 | (/sf) (| 80. | ,
0, | .81 | 1 | | 2.34 | 27.184 | /sf fir) V | 9.7 | 13.55 | 7.7 | 24.207
5.782 | E Load = Coad | | | | Delta Compo
(MBtu) (KI | ø. |
12.9 | 901 | 17.5 | 19.0 | -19.44
-19.73 | (DD) 64
(DDS) -8 | | • | ^ı ~ | 9 | ص.
د | -14.33
cept | (S00)
8 (Q00) | Basement | 10.3 | 13.1 | -14.12 | | | ep
Sp | (DDS) 42 |) uoi | ė | -7 | -14.3 | Ø1ELF 2
Ø1ELF | Base
Typical
Residual | | Chicago I | | ā | Ce: | | R-19 | 7 0 | ს .
ს რ. | -6 | Slope | Slab | | | -5 4f | -10 2f | -10 41t
Inter | 0 V | Unheated | R-0 | -11 fl | R-19 fir | - 000 | | nter | Curve (| د د | . 0007 (.89) | 9 | 4. | Stope/.Ø
Curve/.Ø | | | | 4 | (KBtu) | (/sf)
2.93
1.56 | . m | ø. | 67 | . 23 | | 687.52
26.364 | (/ft) | • | 1.42 | | ω, | .000
46.25
1.221 | (/sf) | 2.00 | 2.61 | 2.68 | CV. | 21.4 | (/sf) | 1.02
.32
.19
.05 | 17.44 | | |------------|-------------|---------------------------|-------------------------|------------|-------|------|--------|---|--------------------|----------|-----------|---------|--------------------|------------------|------------------------------------|------------|-------------|--------|----------------------|---------------|--------------------------------------|-----------|---|----------------------|---| | _ | : | elta Co
(MBtu) | 99.
R | 1.7 | -2.12 | , c | 2.7 | | e(DD)
e(DDS) - | asement | • | 779 | 2.6. | -2.9 | cept
e(DD)
e(DDS) | | • | ••, | 1.03 | -i + | e (DDS) - | U-value | | (00)
(00)
(00) | MBtu
MBtu
MBtu | | | ooling Load | ٥ | ¥8
- 8- 0
- 6 - 1 | 7 | R-13 | ٦ ° | 18 | | Slop | Heated B | | 4- 4 | -16 | -10 8f | Mate
Slope
Curv | Crawf | 9- | -11 +1 | R-30 flr
R-38 flr | -49 fl | Slop | Window | 1-Pan
2-Pan
3-Pan
R-10 | Slop
Curv | = 20.69
= 7.11
= -2.20 | | , | U | ponent
(KBtu) | (/sf)
5.86 | 1.83 | 1.33 | 1.13 | 92. | .55
.45 | 1255.68
-44.991 | (/ft) | | -7.3 | 9.4 | 9.6 | -84
46 | t (/sf) | 4. | 1.66 | 2.2 | ; | 2.81/
-8Ø5.73
65.667 | (/sf flr) | . 76
6 .53
0 .31 | .974 | Base Load :
ical Load :
dual Load : | | s Two | | Delta Com
(MBtu) | gui
8. | 9.6 | 6.91 | -7.2 | -7.9 | -8.19 | (DD)
(DDS) | م | | | <u>ء</u> و | 10.6 | (00)
(00)
(00s) | d Basement | 4 | | ۳.
س | | Intercept
Slope(DD)
Curve(DDS) | ration | 54) .0
39)3
23)7 | 001ELF
001ELF | Typid
Resid | | Serie | | | Reil | ` - | ۳. | ? | | 1 1 | Slop
Curv | Slat | | • | -5 4f | -10 21
-10 4f | Interest | Unheated | R-0 | R-11 f | -3Ø f | | Int
Slo | Infilt | 298 | Slope/
Curve/ | | | e Siding | | onent
KBtu) | (/sf)
27.85 | დ.
დ. ძ | 9.1 | o. | - a | | 61.34
39.979 | (/ft) | - | 97.82 | 3.1 | ω α
4. α | 967.12
967.12
38.115 | (/sf) | ı, | 2.4 | . 80 | 1 W | -5
17
17 | (/sf) | 131.50
61.96
39.38
12.83 | 500.18
19.668 | | | Prototyp | | elta Comp
(MBtu) (| 0 | o, c | 10 | 4 | -24.89 | | (DD) 56 | 400 | | | -18.2 | -17.8 | .cept
(00) 3
(00s) - | | 88 | w u | -29.91 | . | cept
8(00)
8(00S) | -value | e -12.85
e -17.02
-21.93 | e(DD) 5 | MBtu
MBtu
MBtu | | e Story | ing Load | ۵ | ¥a | -7 | 7 ~ | 7 | - 1 - | | Slope | 4 | Heated Da | 10 M | . w | -100- | -16 ate
Inte
Slop
Curv | Crawl | 0 | -11 +1 | R-30 flr | -38 | Int
Se | Window U | 1-Pan
2-Pan
3-Pan
8-10 | Slop | 143.38
44.26
2.00 | | TMY On | Heat | onent
KBtu) | /sf | 5.7 | o; ⊿ | | | 2 | : ```ò | | (/tt) | 2.5 | ၀့ ဖ | 4.0 | 8.30
14.907
086.38
01.690 | (/sf | | 2.41 | -1.25 | | -5.096
5214.56
122.115 | /sf f | | 20.292 | se Load == load == load == | | H | | elta Compoi
(MBtu) (Kl | , 50
50
50 | 27.6 | 32.0 |
 | 39.5 | -41.89 | -42.56
(DD) 6 | (eaa) | | -18.3 | -22.98 | -23.8 | -25.6
cept
(00) |) Ç | | -16.83 | 26.7
29.0 | | Intercept
Slope(DD) 5 | | ١ | .001ELF | Ba
Typic
Residu | | Cincinnati | | å | . <u>.</u> | R-7 | 7, | ٦٢ | 1 (1) | R - R - R - R - R - R - R - R - R - R - | 99-
10- | 0 | Slab | 5
19 | R-5 2ft
R-5 4ft | -10 2ft | -10 4ft
Intel
Slop | | 9
8
9 | 4 | R-19 flr
R-30 flr | | Slop | Tofiltr | ELF Ach
.0007(.80)
.0005(.58)
.0003(.35) | Slope/. | | | | | omponent
(KBtu) | (/sf)
2.56
1.26
1.07
1.07
.74
.53 | 526.97
-9.373
(/ft) | 4.73
2.73
2.23
1.48
1.48
1.98
129.76 | (/sf) | 2.35
2.35
2.53
2.53
2.53
2.665
198.18 | (/sf)
-4.13
-3.99
-2.65
-1.07 | 486.38
12.497 | |-------------------|--------------|----------------------------------|--|---|---|-------------------------|--|---|--| | | Cooling Load | Delta Co
(MBtu) | Wall
R-0
R-762
R-1171
R-1382
R-1987
R-2797
R-34 .1.03 | Slope(DD)
Curve(DDS)
Heated Basement | R-Ø
R-5 4ft92
R-5 8ft94
R-1Ø 4ft97
R-1Ø 8ft97
Intercept Slope(DD)
Curve(DDS) | Crawl | R-0
R-11 flr .38
R-19 flr .43
R-30 flr .48
R-38 flr .49
R-49 flr .52
Intercept .52
Slope(DD) . | Window U-value
1-Pane .00
2-Pane .02
3-Pane .21
R-10 .44 | Slope(DD) -
Curve(DDS)
13.65 MBtu
8.69 MBtu
3.24 MBtu | | ding Series Two | ပိ | Delta Component
(MBtu) (KBtu) | Ceiling (/sf) R-0 R-7 -2.003 2.17 R-11 -2.35 1.63 R-19 -2.64 1.15 R-22 -2.74 .97 R-38 -2.97 .60 R-49 -3.05 .38 | Slope(DD): 1065.15
Curve(DDS) -21.795
Slab (/ft) | R-0
R-5 2ft -1.54 -12.77
R-5 4ft -1.47 -11.02
R-10 2ft -1.52 -12.27
R-10 4ft -1.43 -10.02
Intercept -4.385
S!ope(DD) -1931.61
Curve(DDS) 93.376 | Unheated Basement (/sf) | R-0
R-11 flr14 1.48
R-19 flr .12 1.91
R-3Ø flr .28 2.18
Intercept 2.95Ø
Slope(DD) -1Ø59.94
Curve(DDS) 1Ø6.5Ø5 | Infiltration (/sf flr) ELF Ach .0007(.54) .00 .61 .0005(.36)22 .42 .0003(.22)43 .25 | Slope/.001ELF .792
Curve/.001ELF .104
Base Load = Typical Load = Residual Load = | | Town Prototype Si | eating Load | Delta Component
(MBtu) (KBtu) |
Wall
R-0
R-7
R-11
R-13
R-13
R-13
R-19
R-19
R-19
R-27
R-19
R-19
R-27
R-19
R-19
R-19
R-19
R-19
R-11
R-11
R-11
R-11
R-11
R-11
R-11
R-11
R-11
R-11
R-11
R-11
R-11
R-11
R-11
R-11
R-11
R-11
R-11
R-11
R-11
R-11
R-11
R-11
R-11
R-11
R-11
R-11
R-11
R-11
R-11
R-11
R-11
R-11
R-11
R-11
R-11
R-11
R-11
R-11
R-11
R-11
R-11
R-11
R-11
R-11
R-11
R-11
R-11
R-11
R-11
R-11
R-11
R-11
R-11
R-11
R-11
R-11
R-11
R-11
R-11
R-11
R-11
R-11
R-11
R-11
R-11
R-11
R-11
R-11
R-11
R-11
R-11
R-11
R-11
R-11
R-11
R-11
R-11
R-11
R-11
R-11
R-11
R-11
R-11
R-11
R-11
R-11
R-11
R-11
R-11
R-11
R-11
R-11
R-11
R-11
R-11
R-11
R-11
R-11
R-11
R-11
R-11
R-11
R-11
R-11
R-11
R-11
R-11
R-11
R-11
R-11
R-11
R-11
R-11
R-11
R-11
R-11
R-11
R-11
R-11
R-11
R-11
R-11
R-11
R-11
R-11
R-11
R-11
R-11
R-11
R-11
R-11
R-11
R-11
R-11
R-11
R-11
R-11
R-11
R-11
R-11
R-11
R-11
R-11
R-11
R-11
R-11
R-11
R-11
R-11
R-11
R-11
R-11
R-11
R-11
R-11
R-11
R-11
R-11
R-11
R-11
R-11
R-11
R-11
R-11
R-11
R-11
R-11
R-11
R-11
R-11
R-11
R-11
R-11
R-11
R-11
R-11
R-11
R-11
R-11
R-11
R-11
R-11
R-11
R-11
R-11
R-11
R-11
R-11
R-11
R-11
R-11
R-11
R-11
R-11
R-11
R-11
R-11
R-11
R-11
R-11
R-11
R-11
R-11
R-11
R-11
R-11
R-11
R-11
R-11
R-11
R-11
R-11
R-11
R-11
R-11
R-11
R-11
R-11
R-11
R-11
R-11
R-11
R-11
R-11
R-11
R-11
R-11
R-11
R-11
R-11
R-11
R-11
R-11
R-11
R-11
R-11
R-11
R-11
R-11
R-11
R-11
R-11
R-11
R-11
R-11
R-11
R-11
R-11
R-11
R-11
R-11
R-11
R-11
R-11
R-11
R-11
R-11
R-11
R-11
R-11
R-11
R-11
R-11
R-11
R-11
R-11
R-11
R-11
R-11
R-11
R-11
R-11
R-11
R-11
R-11
R-11
R-11
R-11
R-11
R-11
R-11
R-11
R-11
R-11
R-11
R-11
R-11
R-11
R-11
R-11
R-11
R-11
R-11
R-11
R-11
R-11
R-11
R-11
R-11
R-11
R-11
R-11
R-11
R-11
R-11
R-11
R-11
R-11
R-11
R-11
R-11
R-11
R-11
R-11
R-11
R-11
R-11
R-11
R-11
R-11
R- | Slope(DD) 5024.58
Curve(DDS)409
Heated Basement (/ft) | R-Ø -6.25 112.81
R-5 4ft -8.09 66.81
R-5 8ft -8.59 54.31
R-1Ø 4ft -8.51 56.31
R-1Ø 8ft -9.22 38.56
Intercept .000
Slope(DD) 3830.70
Curve(DDS) -25.395 | Crawl (/sf) | R-0
R-11 flr -8.55 3.69
R-19 flr -10.00 1.27
R-30 flr -10.8921
R-38 flr -11.0955
R-49 flr -11.67 -1.52
Intercept -3.796
Slope(DD) 4605.66
Curve(DDS) -71.642 | Window U-value (/sf) 1-Pane .00 118.74 2-Pane -9.65 51.72 3-Pane -12.40 32.64 R-10 -15.63 10.19 | Slope(DD) 4318.25
Curve(DDS) 6.792
67.79 MBtu
18.87 MBtu
.47 MBtu | | Cincinnati OH TMY | H | Delta Component
(MBtu) (KBtu) | Ceiling (/sf) R-0 .00 30.94 R-7 -11.41 11.92 R-11 -13.23 8.89 R-19 -14.87 6.16 R-22 -15.44 5.20 R-36 -16.67 3.16 R-49 -17.33 2.06 | Slope(DD) 5650.38
Curve(DDS) -72.804
Slab (/ft) | R-0 -8.71 51.31
R-5 2ft -9.83 23.31
R-5 4ft -10.12 16.06
R-10 2ft -10.02 18.56
R-10 4ft -10.43 8.31
Intercept -11.917
Slope(DD) 6028.90
Curve(DDS) -41.168 | Unheated Basement (/sf) | R-0 -6.25 7.52
R-11 flr -9.22 2.57
R-19 flr -10.19 .96
R-30 flr -10.8108
Intercept -2.940
Slope(DD) 3925.81
Curve(DDS) -367.746 | Infiltration (/sf flr)
ELF Ach
.0007(.81) .00 13.38
.0005(.60) -5.05 9.17
.0003(.35) -9.73 5.27 | Slope/.001ELF 16.417 Curve/.001ELF 3.854 Base Load = Typical Load = Residual Load = | | | Cooling Load | Delta Component
(MBtu) (KBtu) | ()
()
()
()
()
()
()
()
()
()
()
()
()
(| -1957 - 3
-2759 - 2
-3461 - 2 | Slope(DD) 216.04
Curve(DDS) 32.979
Heated Basement (/ft) | R-0
R-5 4ft77 2.83
R-5 8ft77 2.83
R-10 4ft79 2.00
R-10 8ft80 1.66
Intercept .80 1.000
Slope(DD) 171.99
Curve(DDS) -1.493 | Crawl (/sf) | R-0
R-11 flr .48 2.22
R-19 flr .67 2.37
R-3Ø flr .64 2.49
R-38 flr .66 2.52
R-49 flr .71 2.59
Intercept 2.75Ø
Slope(DD) -344.98
Curve(DDS) 16.586 | r) Window U-value (/sf) 1-Pane .00 -2.37 2-Pane .01 -2.33 3-Pane .12 -1.55 R-10 .2563 | Slope | = 12.10 MBtu
= 7.70 MBtu
= 2.55 MBtu | |----------------------------|--------------|----------------------------------|---|--|---|---|-------------------------|---|---|---|--| | ing Series Two | ပိ | Delta Component
(MBtu) (KBtu) | eiling (/sf
-0 .00 5.2
-7 -2.00 1.9
-11 -2.31 1.3 | R-19 -2.00 .31
R-22 -2.00 .37
R-30 -2.81 .57
R-49 -2.93 .36
R-60 -2.96 .31 | Slope(DD) 810.41
Curve(DDS) 12.618
Slab (/ft) | R-Ø
R-E 2ft -1.19 -11.34
R-E 4ft -1.11 -8.67
R-10 2ft -1.13 -9.34
R-10 4ft -1.09 -8.00
Intercept -4.958
Slope(DD) -1009.43
Curve(DDS) 39.431 | Unheated Basement (/sf) | R-0
R-11 flr07 1.29
R-19 flr .17 1.69
R-30 flr .32 1.95
Intercept 2.675
Slope(DD) -1001.83
Curve(DDS) 102.197 | Infiltration (/sf flr
ELF Ach .0007(.54) .000 .44
.0005(.39)19 .28
.0003(.23)35 .15 | .36 | Base Load
Typical Load
Residual Load | | MApartment Prototype Sidir | eating Load | Delta Component
(MBtu) (KBtu) | 4.1.
Ø.6.5. | -13 -6.03 8.2
-19 -6.39 7.0
-27 -7.03 5.0
-34 -7.41 3.8 | Slope(DD) 4895.17
Curve(DDS) 30.633
Heated Basement (/ft) | R-0
R-5 4ft -9.16 75.76
R-5 8ft -9.59 61.43
R-10 4ft -9.53 63.59
R-10 8ft -10.13 43.43
Intercept .0000
Slope(DD) 4283.57
Curve(DDS) -25.843 | Craw! (/sf) | R-0 .00 19.05 R-11 flr -8.72 4.53 R-19 flr -10.18 2.09 R-30 flr -11.10 .55 R-38 flr -11.32 .20 R-49 flr -11.3282 Intercept -3.125 Slope(DD) 4725.73 Curve(DDS) -78.071 | .) Window U-value (/sf)
1-Pane .00 117.58
2-Pane -9.72 50.11
3-Pane -12.39 31.56
R-10 -15.53 9.73 | Slope(DD) 4106.88
Curve(DDS) 13.139 | = 63.71 MBtu
= 17.09 MBtu
= .68 MBtu | | Cincinnati OH TMY | 9H | Delta Component
(MBtu) | (/sf
-0 .00 30.1
-7 -11.18 11.5
-1 -12.97 8.5 | R-19 -14.57 5.90
R-22 -15.12 4.97
R-30 -15.87 3.74
R-38 -16.31 2.99
R-49 -16.92 1.98 | lope(DD) 5381
urve(DDS) -49. | 2ft -10.37 35.
4ft -10.37 35.
2ft -10.61 27.
2ft -10.62 30.
ntercept -1.9
intercept -1.9
urve(DD) 6404. | ted Basement (/s | R-0
R-11 flr -9.86 2.63
R-19 flr -10.69 1.24
R-30 flr -11.22 .35
Intercept -2.133
Slope(DD) 3429.76
Curve(DDS) -340.028 | Infiltration (/sf flr
ELF Ach
.0007(.81) .00 13.30
.0005(.60) -5.03 9.10
.0003(.35) -9.69 5.22 | Slope/.001ELF 16.228
Curve/.001ELF 3.959 | Base Load
Typical Load
Residual Load | | | 7
7
7
7 | Wall (/sf) R-0 .00 2.96 R-7 -1.65 1.50 R-11 -1.88 1.29 R-13 -2.24 .97 R-19 -2.42 .81 R-27 -2.64 .61 | Slope(DD) 619.25
Curve(DDS) -12.749
Heated Basement (/ft) | R-0 -2.70 2.70
R-5 4ft -3.03 .71
R-5 8ft -3.01 .71
R-10 4ft -3.11 .23
R-10 8ft -3.11 .23
Intercept .000
Slope(DD) 4.94
Curve(DDS) 1.602 | · Crąwi (/sf) | R-0
R-11 flr .58 2.42
R-19 flr .59 2.43
R-38 flr .61 2.44
R-48 flr .61 2.44
Intercept .62 2.45
Slope(DD) 26.45
Curve(DDS) -19.770 | . 1-Pane00 3.40
2-Pane28 1.89
3-Pane40 1.21
R-1055 .42 | Slope(DD) 185.70
Curve(DDS) -2.154
= 19.16 MBtu
= 3.77 MBtu
= -3.68 MBtu | |---|----------------------------------
--|---|---|-------------------------|---|---|---| | ding Series Two | Delta Component
(MBtu) (KBtu) | Ceiling (/sf) R-0 .000 6.91 R-7 .6.48 2.70 R-11 .7.52 2.02 R-19 .8.45 1.42 R-22 .9.78 1.20 R-38 .9.50 .74 R-49 .9.75 .58 R-60 .9.91 .47 | Slope(DDS) 1315.38
Curve(DDS) -25.323
Slab (/ft) | R-0 -3.96 -4.89 R-5 2ft -3.79 -3.87 R-6 4ft -3.76 -3.33 R-10 2ft -3.76 -3.63 R-10 4ft -3.62 -2.84 Intercept996 Slope(DD) -649.47 Curve(DDS) 26.830 | Unheated Basement (/sf) | R-0 -2.70 .29 R-11 flr -1.21 1.26 R-19 flr80 1.53 R-30 flr53 1.70 Intercept 2.164 Slope(DD) -630.89 Curve(DDS) 51.786 | Infiltration (/sf flr)
ELF Ach
.0007(.62) .00 .36
.0005(.45)16 .26
.0003(.27)32 .16 | Slope/.001ELF .519
Curve/.001ELF .000
Base Load
Typical Load
Residual Load | | One Story Prototype Sid
Heating Load |)
)
)
:
: | Wall
R-0
R-7
R-1
R-11
R-11
R-13
R-13
R-19
R-19
R-25
R-27
R-34
R-34
R-36
R-37
R-36
R-37
R-36
R-37
R-36
R-36
R-36
R-36
R-36
R-36
R-36
R-36
R-36
R-36
R-36
R-36
R-36
R-36
R-36
R-36
R-36
R-36
R-36
R-36
R-36
R-36
R-36
R-36
R-36
R-36
R-36
R-36
R-36
R-36
R-36
R-36
R-36
R-36
R-36
R-36
R-36
R-36
R-36
R-36
R-36
R-36
R-36
R-36
R-36
R-36
R-36
R-36
R-36
R-36
R-36
R-36
R-36
R-36
R-36
R-36
R-36
R-36
R-36
R-36
R-36
R-36
R-36
R-36
R-36
R-36
R-36
R-36
R-36
R-36
R-36
R-36
R-36
R-36
R-36
R-36
R-36
R-36
R-36
R-36
R-36
R-36
R-36
R-36
R-36
R-36
R-36
R-36
R-36
R-36
R-36
R-36
R-36
R-36
R-36
R-36
R-36
R-36
R-36
R-36
R-36
R-36
R-36
R-36
R-36
R-36
R-36
R-36
R-36
R-36
R-36
R-36
R-36
R-36
R-36
R-36
R-36
R-36
R-36
R-36
R-36
R-36
R-36
R-36
R-36
R-36
R-36
R-36
R-36
R-36
R-36
R-36
R-36
R-36
R-36
R-36
R-36
R-36
R-36
R-36
R-36
R-36
R-36
R-36
R-36
R-36
R-36
R-36
R-36
R-36
R-36
R-36
R-36
R-36
R-36
R-36
R-36
R-36
R-36
R-36
R-36
R-36
R-36
R-36
R-36
R-36
R-36
R-36
R-36
R-36
R-36
R-36
R-36
R-36
R-36
R-36
R-36
R-36
R-36
R-36
R-36
R-36
R-36
R-36
R-36
R-36
R-36
R-36
R-36
R-36
R-36
R-36
R-36
R-36
R-36
R-36
R-36
R-36
R-36
R-36
R-36
R-36
R-36
R-36
R-36
R-36
R-36
R-36
R-36
R-36
R-36
R-36
R-36
R-36
R-36
R-36
R-36
R-36
R-36
R-36
R-36
R-36
R-36
R-36
R-36
R-36
R-36
R-36
R-36
R-36
R-36
R-36
R-36
R-36
R-36
R-36
R-36
R-36
R-36
R-36
R-36
R-36
R-36
R-36
R-36
R-36
R-36
R-36
R-36
R-36
R-36
R-36
R-36
R-36
R-36
R-36
R-36
R-36
R-36
R-36
R-36
R-36
R-36
R-36
R-36
R-36
R-36
R-36
R-36
R-36
R-36
R-36
R-36
R-36
R-36
R-36
R-36
R-36
R-36
R-36
R-36
R-36
R-36
R-36
R-36
R-36
R-36
R-36
R-36
R-36
R-36
R-36
R-36
R-36
R-36
R-36
R-36
R-36
R-36
R-36
R-36
R-36
R-36
R-36
R-36
R-36
R-36
R-36
R-36
R-36
R-36
R-36
R-36
R-36
R-36
R-36
R-36
R-36
R-36
R-36
R-36
R-3 | Slope(DD) 6475.21
Curve(DDS) -102.898
Heated Basement (/ft) | R-Ø -9.02 101.68 R-5 4ft -14.40 69.28 R-5 8ft -16.43 57.05 R-10 4ft -15.86 60.48 R-10 8ft -18.94 41.93 Intercept .000 Slope(DD) 4511.61 Curve(DDS) -49.062 | Crawl (/sf) | R-0 .00 16.82 R-11 flr -26.1919 R-19 flr -30.67 -3.10 R-30 flr -33.44 -4.90 R-30 flr -34.07 -5.31 R-49 flr -35.89 -6.31 R-49 flr -35.89 -6.31 R-60 flr -35.89 -6.31 Curve(DDS) -101.000 | r) Window U-value (/sf) 1-Pane .00 148.09 2-Pane -14.39 70.22 3-Pane -19.11 44.65 R-10 -24.67 14.59 | Slope(DD) 6261.38
Curve(DDS) -24.700
= 155.85 MBtu
= 47.79 MBtu
= 8.23 MBtu | | Denver CO WYEC | Delta Component
(MBtu) (KBtu) | Ceiling (/sf) R-0 .000 34.17 R-7 -31.53 13.70 R-11 -36.57 10.43 R-19 -41.09 7.49 R-20 -42.85 6.35 R-30 -46.51 4.81 R-49 -47.91 3.06 R-60 -48.73 2.53 | Slope(DD) 7012.62
Curve(DDS) -210.575
Slab (/ft) | R-0 -16.79 54.88 R-5 2ft -22.04 23.25 R-6 4ft -23.56 14.09 R-10 2ft -23.01 17.41 R-10 4ft -25.10 4.82 Intercept -21.627 Slope(DD) 8533.28 Curve(DDS) -142.963 | Unheated Basement (/sf) | R-0
R-11 flr -24.49 .92
R-19 flr -28.71 -1.83
R-30 flr -31.43 -3.59
Intercept -8.315
Slope(DD) 6411.00
Curve(DDS) -517.169 | Infiltration (/sf flr
ELF Ach
.0007(.75) .00 15.22
.0005(.54) -6.97 10.69
.0003(.32)-13.72 6.31 | Slope/.001ELF 20.487
Curve/.001ELF 1.786
Base Load
Typical Load
Residual Load | | | | omponent
(KBtu) | (/sf)
3.47
1.85
1.62 | 4 Ø Ø Ø | 826.29
33.669
(/ft) | | (/sf) | 1.69
2.09
2.11
2.13
2.13
2.13
7.93 | (/sf)
1.72
.68
.43 | 51.95
.503 | | |------------------------|------------|---------------------------------------|---|--|---|--|-----------------------|---|--|---|--| | | | elta Com
(MBtu) | 11- | -1.15
-1.27
-1.35 | (DD)
(DDS) - | 98
-1.64
-1.63
-1.66
-1.94
(DD)
(DD) | | | value
08
15
19 | (\$99)
(90) | M8tu
M8tu
M8tu | | | ing Load | Õ | Wa-1
R-6
R-11 | R-19
R-27
R-34 | Slope
Curve | 6
4ft
5 8ft
10 4ft
10 8ft
Inter
Slope
Curve | - X & L | -0
-11 fr
-19 fr
-38 fr
-49 fr
-49 fr
-49 fr
-70 fr
-70 fr
-70 fr | indow U-v
1-Pane
2-Pane
3-Pane
R-10 | Slope | 12.23 M
5.99 M
1.47 M | | | Coolin | +~ | ~~~ o | 0 4 0 6 16 16 | = | ~ www.ww.w <i>\\</i> | ت
م | | 2 8 8 × | e ∺ | וווו
סיסים | | | | mponent
(KBtu) | /sf
2.3
2.8 | 2 | 484.3
47.51
(/ft | -12.8
-11.3
-10.5
-11.0
-9.8
-7.04
42.12 | (/sf | 1.84
1.84
1.84
1.84
1.84 | /sf f
.2
.8 | Ø8
. 52 | - Loa | | Two | | റ്ട | 9000 | | 0) 1
0S) - | -1.53
-1.47
-1.44
-1.46
-1.46
-1.41
(00)
(00) | sement | 98
42
27
17
17
0) | on.
.000
13 | ELF | Bas
Typica
esidua | | eries T | | Delta
(MBt | - 10g | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | lope (Diurve (Diah | ∟ 0 0 | ted Ba | fir fir fir fir Intercept Slope(DD) Curve(DDS) | ltrati
Ach
(.62)
(.45)
(.27) | e/.0011
e/.001 | œ. | | Ser | | | | چەرەپەرەپەرە | ัดฮ์ พี | | Unheat | R-6
R-11
R-19
R-36
CC | Inf:
ELF
.0007
.0005 | Slop | | |
9 | | | | | | | | | | | | | 70 | | | -500 | * m m m | 5 00 - | | _ | 0 / O 0 O 0 / O 0 O 0 | | - G | | | Pis | | ponent
(KBtu) | (/sf)
3ø.1ø
13.99
11.69 | 5.00 | 419.8Ø
32.776
(/f+) | 106.
61.
48.
51.
34.
517. | (/sf) | 16.85
1.39
-1.20
-2.62
-3.89
-6.236
1572.62 | (/sf)
118.64
47.39
29.64
8.78 | 31.716 | | | Pis | | ta Component
3tu) (KBtu) | .00 30.1
7.68 13.9
8.77 11.6 | 6.66 7.7
1.68 5.5
2.31 4.2 | 5419.8 | .84 106
.67 61
.16 48
.16 48
.17 51
.72 34
.3517 | Sf | 900
1000
1000
1000
1000
1000
1000
1000 | lue (/sf
.ØØ 118.6
1Ø.26 47.3
12.82 29.6
15.82 8.7 | 3656.5 | כככ | | Prototype Sid | peo | Delta Component
(MBtu) (KBtu) | /sf
.00 30.1
-7.68 13.9
-7.68 13.9 | 3 -10.03 9.0
9 -10.66 7.7
7 -11.68 5.5
4 -12.31 4.2 | ope(DD) 5419.8
rve(DDS) 32.77
Basement (/f+ | ft -7.67 61
ft -8.16 48
ft -8.07 51
ft -8.07 51
ft -8.07 51
ft -8.72 34
tercept 3517
ope(DD) 3517 | Sf | . 00 16
1 | U-value (/sf
ane .00 118.6
ane -10.26 47.3
ane -12.82 29.6
0 -15.82 8.7 | ope(DD) 3656.5
rve(DDS) 31.71 | 51 MBtu
73 MBtu
36 MBtu | | Town Prototype Sid | ing Loa | elta (
(MBtu) | /sf
.00 30.1
-7.68 13.9
-8.77 11.6 | -13 -10.03 9.0
-19 -10.66 7.7
-27 -11.68 5.5
-34 -12.31 4.2 | pe(DD) 5419.8
ve(DDS) 32.77 | -0 -5.84 106 -5 4ft -7.67 61 -5 8ft -8.16 48 -10 4ft -8.07 51 -10 fft -8.72 34 Intercept -8.72 34 Slope(DD) 3517 Curve(DDS) -20. | Sf | .000 16
-9.28 1
-10.83 -1
-11.68 -2
-11.88 -2
-12.44 -6
pe(DD) 4572
ve(DD) 4572
ve(DDS) -13. | U-value (/sf
ne .00 118.6
ne -10.26 47.3
ne -12.82 29.6
-15.82 8.7 | pe(DD) 3656.5
ve(DDS) 31.71 | | | Mid Town Prototype Sid | ng Loa | t Delta (| f) Wall (/sf
41 R-0 .00 30.1
67 R-7 -7.68 13.9
19 R-11 -8.77 11.6 | 08 | 21 Slope(DD) 5419.8
31 Curve(DDS) 32.77 | 9 R-0 -5.84 106
14 R-5 8ft -7.67 61
14 R-10 4ft -8.07 51
16 R-10 8ft -8.07 51
15 Intercept -3.17 351
16 Slope(DD) 3517
18 Curve(DDS) -20. | ;) Crawl (/sf | 12 R-0
24 R-11 flr -9.28
69 R-19 flr -10.83 -1
8-38 flr -11.68 -2
8-38 flr -11.88 -2
R-48 flr -12.44 -6
51 Slope(DD) 4572
42 Curve(DDS) -13. | indow U-value (/sf
1-Pane .00 118.6
2-Pane -10.26 47.3
3-Pane -12.82 29.6
R-10 -15.82 8.7 | 16 Slope(DD) 3656.5
63 Curve(DDS) 31.71 | ad = 71.51
ad = 18.73
ad = 7.86 | | Town Prototype Sid | eating Loa | omponent Delta (
(KBtu) (MBtu) | (/sf) Wall (/sf 36.1 a.00 30.1 a.01 a.01 a.01 a.01 a.01 a.01 a.01 a | R R-13 -10.03 9.0
R R-19 -10.66 7.7
R R-27 -11.68 5.5
1 R-34 -12.31 4.2
6 | Slope(DD) 5419.8
Curve(DDS) 32.77 | 8 40.79 R-0 -5.84 106
9 10.54 R-5 4ft -7.67 61
9 3.04 R-5 8ft -8.16 48
9 5.54 R-10 4ft -8.07 51
-22.065 Intercept -3.17
5417.98 Curve(DDS) -20. | t (/sf) Crawl (/sf | 7 1.2 R-0 .00 16
369 R-19 flr -9.28 17
7 -1.93 R-30 flr -11.68 -2
R-38 flr -11.88 -2
R-49 flr -12.44 -6
Slope(DD) 4572
Curve(DDS) -13. | (/sf flr) Window U-value (/sf b 12.61 1-Pane .00 118.6 1 8.35 2-Pane -10.26 47.3 9 4.62 3-Pane -12.82 29.6 R-10 -15.82 8.7 | 6 Slope(DD) 3656.5
3 Curve(DDS) 31.71 | se Load = 71.51
al Load = 18.73
al Load = 7.86 | | Mid Town Prototype Sid | eating Loa | Component Delta (
J) (KBtu) (MBtu) | 9 (/sf) Wall (/sf)
-13.05 13.67 R-7 -7.68 13.9
-15.13 10.19 R-11 -8.77 11.6 | 7.08 R-13 -10.03 9.0
6.98 R-19 -10.66 7.7
4.50 R-27 -11.68 5.5
3.61 R-34 -12.31 4.2
2.38 | S) -87.831 Curve(DDS) 5419.8
Curve(DDS) 32.77 | -8.48 40.79 R-0 -5.84 106 -9.69 10.54 R-5 4ft -7.67 61 -9.99 3.04 R-5 8ft -8.16 48 -9.89 5.54 R-10 4ft -8.07 51 -10.27 -3.96 R-10 4ft -8.72 34 cept -22.065 Intercept (DD) 5417.96 Curve(DD) 3517 | nent (/sf) Crawl (/sf | 84 7.12 R-0 .00 16
37 1.24 R-11 flr -9.28 15
5369 R-19 flr -10.83 -1
27 -1.93 R-30 flr -11.68 -2
R-38 flr -11.88 -2
R-49 flr -12.44 -6
5.353 Intercept -6
5.4696.30 Slope(DD) 4572
Curve(DDS) -13 | tion (/sf flr) Window U-value (/sf) .00 12.61 1-Pane .00 118.6 | ELF 13.416 Slope(DD) 3656.5
ELF 6.563 Curve(DDS) 31.71 | 6 Load = 71.51
 Load = 18.73
 Load = 7.86 | | Mid Town Prototype Sid | eating Loa | omponent Delta (
(KBtu) (MBtu) | eiling (/sf) Wall (/sf
-0 .00 35.41 R-0 .00 30.1
-7 -13.05 13.67 R-7 -7.68 13.9
-11 -15.13 10.19 R-11 -8.77 11.6 | 17.00 7.08 K-13 -10.05 9.0
17.66 5.98 R-19 -10.66 7.7
18.55 4.50 R-27 -11.68 5.5
19.08 3.61 R-34 -12.31 4.2
19.82 2.38 | pe(DD) 6493.21 Slope(DD) 5419.8
ve(DDS) -87.831 Curve(DDS) 32.77 | 2ft -9.69 10.54 R-6 4ft -7.67 61
4ft -9.99 3.04 R-5 8ft -8.16 48
2ft -9.99 3.04 R-5 8ft -8.16 48
2ft -9.89 5.54 R-10 4ft -8.07 51
4ft -10.27 -3.96 R-10 4ft -8.27 51
ntercept -22.065 Intercept -8.72 34
1000(DD) 5417.96 Slope(DD) 3517
urve(DDS) 27.498 Curve(DDS) -20. | nent (/sf) Crawl (/sf | -5.84 7.12 R-0 .00 16 -9.37 1.24 R-11 flr -9.28 1 10.5369 R-19 flr -10.83 -1 11.27 -1.93 R-30 flr -11.68 -2 R-38 flr -11.88 -2 R-49 flr -12.44 -3 D1 4696.30 Slope(DD) 4572 D5 -441.542 Curve(DDS) -13 | ion (/sf flr) Window U-value (/sf | F 13.416 Slope(DD) 3656.5
F 6.563 Curve(DDS) 31.71 | Base Load = 71.51
ical Load = 18.73
dual Load = 7.86 | | Cooling Load | Delta Component
(MBtu) (KBtu) | Wali
R-0 .00 3.16
R-747 1.61
R-1154 1.39
R-1365 1.06
R-1970 .89
R-2777 .67 | Slope(DD) 686.23
Curve(DDS) -20.484
Heated Basement (/ft) | R-6 4ft8241
R-5 8ft8398
R-10 4ft8358
R-10 8ft8241
Intercept .000
Slope(DD) -56.17
Curve(DDS) 2.008 | Crawl (/sf) | R-0 .00 1.35 R-11 flr .23 1.73 R-19 flr .23 1.74 R-30 flr .23 1.73 R-49 flr .23 1.73 R-49 flr .23 1.73 Intercept 1.701 Slope(DD) 59.52 Curve(DDS) -25.095 | Window U-value (/sf)
1-Pane .00 2.58
2-Pane20 1.23
3-Pane26 .78
R-1034 .26 | Slope(DD) 109.70
Curve(DDS)451
10.43 MBtu
4.70 MBtu
.17 MBtu | |--|----------------------------------|---|--|--|-------------------------|---|---|---| | ing Series Two | Delta Component
(MBtu) (KBtu) | Ceiling (/sf) R-0 .000 7.36 R-7 -2.63 2.97 R-11 -3.05 2.27 R-19 -3.43 1.64 R-22 -3.58 1.39 R-30 -3.78 1.30 R-30 -4.01 .67 R-40 -4.01 .67 R-60 -4.08 .55 | Slope(DD) 1544.24
Curve(DDS) -51.153
Slab (/ft) | R-0 -1.04 -7.58 R-5 2ft -1.00 -6.24 R-5 4ft97 -5.41 R-10 2ft99 -5.91 R-10 4ft95 -4.74 Intercept95 -4.74 Slope(DD) -987.03 Curve(DDS) 43.241 | Unheated Basement (/sf) | R-0
R-11 flr38 .72
R-19 flr25 .93
R-30 flr16 1.07
Intercept 1.47
Slope(DD) -515.04
Curve(DDS) 47.159 | Infiltration (/sf flr) VELF Ach
.0007(.62) .00 .30
.0005(.45)12 .20
.0003(.27)22 .11 | Slope/.001ELF .312
Curve/.001ELF .156
Base Load =
Typical Load =
Residual Load = | | MApartment Prototype Sidi
eating Load | Delta Component
(MBtu) (KBtu) | Wall
R-0
R-7
R-1
R-11
R-13
R-13
R-17
R-19
R-19
R-27
R-27
R-20
R-27
R-34
R-34
R-34
R-34
R-34
R-34
R-34
R-34 | Slope(DD) 4962.33
Curve(DDS) 108.735
Heated Basement (/ft) | R-0
R-5 4ft -9.07 77.19
R-5 8ft -9.53 61.86
R-10 4ft -9.45 64.52
R-10 8ft -10.06 44.02
Intercept .0000
Slope(DD) 4455.78
Curve(DDS) -26.413 | Crawi (/sf) | R-0
R-11 fir -9.76 2.70
R-19 fir -11.36 .04
R-30 fir -12.32 -1.57
R-49 fir -12.55 -1.93
R-49 fir -13.18 -2.99
Intercept -5.438
Slope(DD) 4935.56
Curve(DDS) -34.022 | 1-Pane00 119.17
2-Pane -10.42 46.77
3-Pane -12.95 29.20
R-10 -15.93 8.54 | Slope(DD) 3546.14
Curve(DDS) 36.659
= 67.06 MBtu
= 16.76 MBtu | | Denver CO WYEC | Delta Component
(MBtu) (KBtu) | Ceiling (/sf) R-0 .000 34.06 R-7 -12.72 12.86 R-11 -14.75 9.48 R-19 -16.57 6.44 R-22 -17.19 5.42 R-30 -18.01 4.04 R-38 -18.81 3.21 R-49 -18.89 2.58 R-60 -19.13 2.18 | Slope(DD) 5823.89
Curve(DDS) -13.371
Slab (/ft) | R-0 -9.45 64.52
R-5
2ft -10.46 30.86
R-5 4ft -10.73 21.86
R-10 2ft -10.63 25.02
R-10 4ft -10.98 13.52
Intercept -9.325
Slope(DD) 7042.21
Curve(DDS) -29.227 | Unheated Basement (/sf) | R-0
R-11 flr -10.30 1.81
R-19 flr -11.34 .07
R-30 flr -12.01 -1.04
Intercept -4.152
Slope(DD) 4285.65
Curve(DDS) -421.444 | Infiltration (/sf flr)
ELF Ach
.0007(.75) .00 12.28
.0005(.55) -5.12 8.01
.0003(.33) -9.51 4.35 | Slope/.001ELF 12.250
Curve/.001ELF 7.552
Base Load =
Typical Load =
Residual Load = | | | | omponent
(KBtu) | (/sf)
5.33
2.14
2.14
1.69
1.69
1.04 | 1025.52
-6.273
(/ft) | | (/sf) | 4.26
4.26
4.10
3.96
3.92
3.82
3.597
3.597
68.593 | (/sf)
5.20
1.57
.95 | 82.85
4.319 | | |----------|---------|---------------------|---|-------------------------------|---|---------|--|---|---|--------| | | | elta Cor
(MBtu) | | DD)
DDS)
ement | -2.92
-3.55
-3.63
-3.76
-3.76
-3.93
cept
(DD)
(DDS) | | .000
52
52
75
75
80
80
(000)
(000) | | (DD)
(DDS)
8tu
8tu
8tu | | | • | g Load | ۵ | Wall
R-0
R-7
R-11
R-13
R-27
R-27 | Slope (Curve (| Sandar
Sandar
Cunter
Cunter
Cunter
Cunter
Cunter | _ | 1 fir
8 fir
8 fir
Interc
Slope
Curve | dow U-v
1-Pane
3-Pane
R-10 | Slope(
Curve)
7.82 MB
2.06 MB
3.99 MB | | | | 00 1 in | | | He e | 96611 | ر
ت | ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ | <u>.</u> | 4.0 | | | | J | ponent
(KBtu) | (/sf)
12.23
4.81
3.62
2.56
2.17
1.33
1.34 | 374.29
62.411
(/ft) | 53.886.7 | (/sf) | 2.55
3.19
3.38
3.38
3.38
3.555
231.57
6.782 | /sf flr)
.99
.59
.29 | .617
1.136
6 Load
 Load | | | Two | | elta Comp
(MBtu) | .000
11.43
13.26
14.90
15.50
16.31
16.80
17.24 | 0) 2
08) - | -6.48
-6.86
-6.64
-6.72
-6.73
-6.73 | sement | 992 455 64 | on (/
.000
61
-1.08 | ELF
ELF
Bas
Typica
esidua | | | eries T | | - M
- M
- M | 6: | lope (Durve (D | ft
ft
cope(D
re(D | ted Ba | fir -1.
fir -1.
fir -1.
Intercept Slope(DD)
Curve(DDS) | iltrati
Ach
7(.55)
5(.39)
3(.23) | pe/.0011
ve/.0018 | | | S | | | O & & & & & & & & & & & & & & & & & & & | νο ν | 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 | Unhea | R-8
-11
-369
-369 | 10000
9000
10000 | S C L C L C L C L C L C L C L C L C L C | | | e Siding | | omponent
(KBtu) | 12.06
5.35
5.35
3.36
2.76
1.57 | 916.88
60.594
(/ft) | 9.1.0.1.4.8.6 | (/sf) | 9.02
2.15
1.16
.64
.52
634
557.86 | (/sf)
45.97
15.66
9.62
2.51 | 003.22
27.952 | | | Prototyp | | (MBtu) | .00
-7.54
-8.61
-9.84
-10.45
-11.28 | (DD) 19
(DDS) 6
sement | -6.58
-9.88
-10.48
-10.60
-11.21
(DD)
(DD) | | .000
-10.57
-12.00
-12.90
-13.61
-13.61
000) | . 000
-5.60
-6.72
-8.03 | 000) 1
000s) tu
tu
tu | | | Story | Load | ٥ | W W a l l l l l l l l l l l l l l l l l | Slope (
Curve (
ted Bas | 4ft
8ft
8ft
Ø 8ft
Interc
Slope(| - | 1 flr
9 flr
8 flr
9 flr
Slope
Curve | indow U-v
1-Pane
2-Pane
3-Pane
R-10 | Slope(Curve(Curve) 2.20 MB 9.70 MB 3.92 MB | | | One (| eating | | | Hea | 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 | E. J. | ************************************** | e i w | # # # #
• | | | WYEC | Ĩ | omponent
(KBtu) | (/sf)
14.89
14.89
3.31
2.54
1.90
1.52
1.52 | 762.28
42.219
(/ft) | 17.49
6.71
5.02
4.84
3.22
.008
867.86 | t (/sf) | 4.74
1.02
1.02
.57
.57
582
-99.347 | (/sf flr
4.62
2.79
1.37 | 3.019
5.114
5.114
al Load |)
] | | | | elta Com
(MBtu) | 9 .000 .000 .000 .000 .000 .000 .000 .0 | (00) 2
(008) - | -10.98
-12.77
-13.05
-13.08
-13.35
-13.35
-10.00) | аѕетел | -6.58
-11.24
-12.31
-13.00
-cept
(DD) | ion
.000
-2.82
-5.01 | .001ELF
.001ELF
Bas
Typics
Residus | , | | aso TX | , | ٥ | RR-6
RR-10
RR-11
RR-110
RR-38
RR-38
RR-38 | Slope (Curve (Slab | 2ft
4ft
0 2ft
0 4ft
Interc
Slope(| eated B | 1 fir
9 fir
Ø fir
Interc
Slope(
Curve(| Infiltrat
ELF Ach
0007(.73)
0005(.52)
0003(.31) | lope/.000
urve/.000 | | | ٥. | | | | | 120 | چ | 3,1,10 | ã ã ã ã L s | - 5 | | | Cooling Load | Delta Component Delta Component (MBtu) (KBtu) | Ceiling (/sf) Wall (/sf) R-0 .00 12.26 R-0 .00 5.61 R-7 -4.54 4.70 R-7 -1.39 2.69 R-11 -5.26 3.49 R-11 -1.59 2.27 R-19 -5.91 2.41 R-13 -1.84 1.74 R-30 -6.14 2.03 R-19 -1.97 1.48 R-38 -6.62 1.22 R-34 -2.27 .85 R-49 -6.77 .97 | Slope(DD) 2200.23 Slope(DD) 1070.42
Curve(DDS) -22.402 Curve(DDS) -5.044
Slab (/ft) Heated Basement (/ft) | 2ft -2.5597 R-5 4ft -1.24 31.78 4ft -2.5597 R-5 8ft -1.26 31.28 0 2ft -2.5597 R-10 4ft -1.30 30.28 0 4ft -2.5472 R-10 8ft -1.31 30.03 Intercept | eated Basement (/sf) Crawl (/sf) | 1 flr66 3.09 R-11 flr .00 4.19 9 flr56 3.25 R-11 flr .00 4.04 0 flr56 3.35 R-30 flr09 4.04 0 flr50 3.35 R-30 flr17 3.90 R-38 flr19 3.87 R-49 flr24 3.78 Intercept 3.622 Intercept 3.548 Slope(DD) -362.18 Slope(DD) 510.46 Curve(DDS) 23.585 Curve(DDS) -75.317 | tration (/sf flr) Window U-value (/ Ach (.54) .00 .85 1-Pane .00 2 (.38)39 .52 2-Pane36 (.23)70 .26 3-Pane35 . | lope/.001ELF | |--------------|--|--|---|--|---|---|--|--------------------| | Heating Load | Delta Component Delta Component
(MBtu) (KBtu) (MBtu) (KBtu) | Ceiling (/sf) Wall (/sf) R-Ø 15.22 R-Ø 10.94 R-7 -5.86 5.46 R-7 -3.11 4.42 R-11 -6.79 3.90 R-13 -3.55 3.49 R-19 -7.63 2.50 R-13 -3.98 2.58 R-22 -7.87 2.10 R-19 -4.20 2.13 R-38 -8.19 1.24 R-27 -4.48 1.53 R-49 -8.54 .82 R-60 -8.64 .82 | Slope(DD) 2191.14 Slope(DD) 1362.39
Curve(DDS) 63.454 Curve(DDS) 125.058
Slab (/ft) Heated Basement (/ft) | R-0 -4.34 12.97 R-0 -3.09 44.22 R-0 R-5 2ft -4.67 4.72 R-5 4ft -3.90 23.97 R-5 R-5 R-5 4ft -4.02 20.97 R-5 R-10 2ft -4.72 3.47 R-10 4ft -4.04 20.47 R-1 R-10 4ft -4.04 20.47 R-1 Intercept .000 Intercept 9.357 R-1 Slope(DD) 582.64 Slope(DD) 743.96 Curve(DDS) 89.073 Curve(DDS) 6.180 | Unheated Basement (/sf) Crawl (/sf) Unh | R-0 -3.09 2.95 R-0 .00 8.10 R-0 R-11 fir -4.05 1.35 R-11 fir -3.42 2.40 R-1 R-19 fir -3.90 1.60 R-1 R-30 fir -4.48 .63 R-30 fir -4.15 1.18 R-30 fir -4.48 .63 R-30 fir -4.21 1.08 R-30 fir -4.21 1.08 R-30 fir -4.21 1.08 R-30 fir -4.38 .80 Intercept120 Intercept .159 Slope(DD) 1019.15 Slope(DD) 1234.43 Curve(DDS) -82.083 Curve(DDS) 61.201 | Infiltration (/sf flr) Window U-value (/sf) Infiltration (/sf) Window U-value (/sf) ELF (0007(.73) .00 3.32 1-Pane .00 37.71 .0007 .0005(.52) -1.85 1.78 2-Pane -3.54 13.13 .0005 .0005 .0003(.31) -3.13 .71 3-Pane -4.27 8.08 .0003 | Slope/.001ELF .583 | Mid Town Prototype Siding WYEC El Paso TX | ing Load | Delta Component
(MBtu) (KBtu) | Wall (/sf) R-0 .00 5.21 R-791 2.34 R-11 -1.04 1.93 R-13 -1.20 1.41 R-19 -1.28 1.15 R-27 -1.37 .87 R-34 -1.43 .70 | Slope(DD) 829.76
Curve(DDS) 25.806
eated Basement (/ft) | 6 4ft -1.06 28.
5 8ft -1.07 28.
10 4ft -1.09 27.
10 8ft -1.12 26.
Intercept 23.5 Slope(DD) 23.5 Curve(DDS) -1.3 | -0 .00 3.19 -11 flr .00 3.19 -11 flr .00 3.33 -19 flr .00 3.22 -38 flr .00 3.19 -49 flr05 3.12 Intercept 2.900 Slope(DD) 471.00 Curve(DDS) -80.777 | | Slope(DD) 100.31
Curve(DDS) 1.784
27.72 MBtu
18.11 MBtu
7.38 MBtu | |--|----------------------------------|--|--|---
--|--|---| | g Series Two | Delta Component
(MBtu) (KBtu) | Ceiling (/sf) R-0 .00 12.99 R-7 .4.79 5.00 R-11 .5.56 3.72 R-19 .6.24 2.58 R-22 .6.48 2.18 R-30 .7.00 1.32 R-49 .7.17 1.04 R-60 .7.27 .86 | Slope(DD) 2364.95
Curve(DDS) -29.417
Slab (/ft) H | 2ft -1.96 .50 R
4ft -1.95 -1.60 R
0 2ft -1.9467 R
0 4ft -1.95 -1.17 R
0 4ft -1.9484 R
1 Letreept .000
5.lope(DD) -462.00
Curve(DDS) 55.842 | ted basement (/st) Ced basement (/st) Ced basement (/st) Ced B R Fir42 2.50 R Fir27 2.74 R R Leacept 2.971 R R Lope(DD) -298.53 Urve(DDS) 9.255 Htation (/sffir) W | 86 .78
86 .23 | Slope/.001ELF .500
Curve/.001ELF .885
Base Load = Typical Load = Residual Load = | | MApartment Prototype Sidin
Heating Load | Delta Component
(MBtu) (KBtu) | Wali
R-0
R-7
R-11
R-13
R-13
R-13
R-13
R-19
R-27
R-29
R-34
R-34
R-34
R-34
R-34
R-34
R-34
R-34 | Slope(DD) 1072.10
Curve(DDS) 170.802
Heated Basement (/ft) | -8 4ft -4.70 17.
-5 8ft -4.77 15.
-10 4ft -4.77 14.
-10 8ft -4.79 14.
-10 8ft -4.89 11.
Intercept 6.9
Slope(DD) 313.
Curve(DDS) 19.9 | R-0 .00 8.73 R-11 flr -3.92 2.19 R-19 flr -4.37 1.45 R-30 flr -4.62 1.02 R-38 flr -4.68 .05 R-49 flr -4.85 .65 Intercept .134 Slope(DD) 1027.45 Curve(DDS) 126.429 Window U-value (/sf) | ane .000 35.9
ane -3.57 11.1
ane -4.20 6.7 | Slope(DD) 609.56
Curve(DDS) 28.465
26.04 MBtu
8.74 MBtu
5.66 MBtu | | El Paso TX WYEC M | Delta Component
(MBtu) (KBtu) | Ceiling (/sf) R-0 .000 15.57 R-7 -6.003 5.52 R-11 -6.99 3.91 R-19 -7.86 2.47 R-20 -8.10 2.07 R-30 -8.42 1.20 R-38 -8.62 1.20 R-49 -8.76 .97 R-60 -8.85 | Slope(DD) 2138.27
Curve(DDS) 82.161
Slab (/ft) | 2ft -5.15 3.08 4ft -5.17 2.2 8 2ft -5.17 2.2 8 4ft -5.18 2.08 4ft -5.21 .8 Curve(DD) -95.11 curve(DDS) 161.24 | -3.91 23.91 21.734.734.884.886.6 | -1.88
-3.09 | Slope/.001ELF604
Curve/.001ELF 7.031
Base Load =
Typical Load =
Residual Load = | | ooling Load | | Wall R-Ø R-Ø R-7 -2.91 R-11 -3.32 2.10 R-13 -3.83 1.65 R-19 -4.08 1.43 R-27 -4.88 1.03 | Slope(DD) 1023.75
Curve(DDS) -15.484
Heated Basement (/ft) | R-0 -3.19 31.65 R-5 4ft -4.05 26.46 R-5 8ft -4.35 24.66 R-10 4ft -4.39 24.42 R-10 8ft -4.70 22.55 Intercept 17.017 Slope(DD) 549.90 Curve(DDS) -4.600 | -0
-11 flr68 5.
-19 flr -1.03 4.
-30 flr -1.34 4.
-38 flr -1.34 4.
-49 flr -1.61 4.
Intercept 4.1
Slope(DD) 695.
Curve(DDS) -83.9. | Window U-value (/sf) 1-Pane .00 9.82 2-Pane -1.12 3.76 3-Pane -1.38 2.34 R-10 -1.69 .67 | Slope(DD) 277.31
Curve(DDS) 3.581
51.72 MBtu
27.33 MBtu
4.65 MBtu | |-------------------------|----------------------------------|---|--|--|--|--|--| | ing Series Two | Delta Component
(MBtu) (KBtu) | Ceiling (/sf) R-0 .000 8.86 R-7 -8.30 3.47 R-11 -9.63 2.61 R-19 -10.82 1.84 R-22 -11.26 1.55 R-30 -11.85 1.17 R-38 -12.21 .93 R-49 -12.60 .75 | Slope(DD) 1697.12
Curve(DDS) -34.094
Slab (/ft) | R-Ø -7.71 4.42 R-5 2ft -8.19 1.52 R-5 4ft -8.26 1.10 R-10 2ft -8.30 .86 R-10 4ft -8.35 .56 Intercept .000 Slope(DD) 64.48 Curve(DDS) 27.894 Unheated Basement (/sf) | Intercept 4.21: Slope(DD) -12.4 | Infiltration (/sf flr)
ELF Ach
.0007(.63) .00 5.05
.0005(.45) -2.06 3.71
.0003(.27) -4.25 2.29 | Slope/.001ELF 7.954 Curve/.001ELF -1.055 Base Load = Typical Load = Residual Load = | | One Story Prototype Sid | Delta Component
(MBtu) (KBtu) | Wali
R-0
R-7
R-1
R-11
R-13
R-19
R-19
R-19
R-19
R-27
R-19
R-19
R-19
R-27
R-19
R-19
R-34
R-34
R-34
R-34
R-34
R-34 | Slope(DD) 2396.43
Curve(DDS) .245
Heated Basement (/ft) | R-0 -8.04 47.77 R-5 4ft -11.23 28.55 R-5 8ft -12.10 23.31 R-10 4ft -12.00 23.91 R-10 8ft -13.17 16.86 Intercept 1.182 Slope(DD) 1545.79 Curve(DDS) -9.541 Craw! | 92.1 | Window U-value (/sf) 1-Pane .00 56.96 2-Pane -6.30 22.87 3-Pane -7.88 14.31 R-10 -9.74 4.25 | Slope(DD) 1773.22
Curve(DDS) 14.554
67.92 MBtu
24.39 MBtu
.28 MBtu | | Fort Worth TX WYEC | Delta Component
(MBtu) (KBtu) | Ceiling (/sf) R-0 .00 14.43 R-7 -13.46 5.69 R-11 -15.61 4.30 R-19 -17.54 3.04 R-22 -18.27 2.57 R-36 -19.83 1.56 R-49 -20.32 1.24 R-60 -20.64 1.03 | Slope(DD) 2824.03
Curve(DDS) -65.673
Slab (/ft) | R-0 -11.49 26.98 R-5 2ft -13.74 13.43 R-5 4ft -14.27 10.24 R-10 2ft -14.11 11.20 R-10 4ft -14.77 7.22 Intercept .000 Slope(DD) 1985.32 Curve(DDS) 31.749 Unheated Basement (/sf) | 1.80.4. 80.08 | Infiltration (/sf flr)
ELF Ach
.0007(.71) .00 6.99
.0005(.53) -3.50 4.72
.0003(.32) -6.66 2.66 | Slope/.001ELF 8.052
Curve/.001ELF 2.760
Base Load =
Typical Load =
Residual Load = | | | | , | | | | | | | | | |---------------------------|-------------|----------------------------------|---|---|--|-------------------------|---|---|---|-------------| | | | omponent
(KBtu) | (/sf)
4.27
1.78
1.18
1.12
.67 | 6Ø6.92
34.832
(/ft) | 45.63
39.63
38.63
38.13
36.13
343.006
696 | (/st) | 5.21
5.13
4.91
4.69
4.69
4.58
4.257
685.03 | 4.76
4.76
.73
.38 | -32.6Ø
8.064 | | | | ooling Load | Delta Con
(MBtu) | Wa | Slope(DD)
Curve(DDS)
Heated Basement | R-0 -1.30
R-5 4ft -1.54
R-5 8ft -1.58
R-10 4ft -1.60
R-10 8ft -1.66
Intercept Slope(DD)
Curve(DDS) | Crawl | R-0
R-11 flr05
R-19 flr18
R-30 flr29
R-49 flr31
R-49 flr31
R-49 flr31
Curve(DD) | Window U-value 1-Pane .00 2-Pane58 3-Pane63 R-1069 | Slope(DD)
Curve(DDS)
34.23 MBtu
24.08 MBtu | 0.02 MBt | | Series Two | Coo | Delta Component
(MBtu) (KBtu) | Ceiling (/sf) R-0 .000 8.66 R-7 -3.19 3.34 R-11 -3.70 2.49 R-19 -4.16 1.72 R-22 -4.32 1.46 R-30 -4.53 1.10 R-38 -4.66 .89 R-49 -4.78 .70 R-60 -4.85 .57 | Slope(DD) 1582.42
Curve(DDS) -20.652
Slab (/ft) | R-0 -3.06 1.63
R-5 2ft -3.19 -1.62
R-5 4ft -3.18 -1.37
R-10 2ft -3.20 -1.87
R-10 4ft -3.19 -1.62
Intercept .000
Slope(DD) -705.14
Curve(DDS) 73.738 | Unheated Basement (/sf) | R-0
R-11 flr74 3.98
R-19 flr65 4.13
R-3Ø flr59 4.23
Intercept 4.455
Slope(DD) -294.41
Curve(DDS) 3.691 | Infiltration (/sf flr)
ELF Ach
.0007(.63) .00 4.67
.0005(.45) -1.44 3.47
.0003(.27) -3.01 2.17 | Slope/.001ELF 7.625
Curve/.001ELF -1.354
Base Load = Typical Load = | Sidual Load | | Mid Town Prototype Siding | eating Load | Delta Component
(MBtu) (KBtu) | Wall R-0 R-0 R-7 -3.33 R-11 -3.80 4.17 R-13 -4.29 3.13 R-19 -4.89 1.89 R-34 -5.10 1.44 | Slope(DD) 1744.31
Curve(DDS) 95.568
Heated Basement (/ft) | R-Ø -3.87 46.75 R-5 4ft
-4.79 23.75 R-5 8ft -4.98 19.00 R-10 4ft -4.96 19.50 R-10 8ft -5.19 13.75 Intercept 2.817 Slope(DD) 969.51 Curve(DDS) 3.203 | Crawl (/sf) | R-0
R-11 flr -4.21 2.55
R-19 flr -4.84 1.50
R-30 flr -5.16 .97
R-38 flr -5.23 .85
R-49 flr -5.44 .50
Intercept -374
Slope(DD) 1645.63
Curve(DDS) 57.145 |) Window U-value (/sf)
1-Pane .00 46.58
2-Pane -4.51 15.26
3-Pane -5.36 9.33
R-10 -6.37 2.35 | Slope(DD) 923.23
Curve(DDS) 31.868
= 31.33 MBtu | 2.78 MB | | Fort Worth TX WYEC | Đ. | Delta Component
(MBtu) (KBtu) | Ceiling (/sf) R-Ø .000 15.19 R-7 -5.75 5.61 R-11 -6.67 4.08 R-19 -7.49 2.70 R-22 -7.75 2.27 R-23 -8.31 1.34 R-49 -8.47 1.07 R-60 -8.57 .90 | Slope(DD) 2411.07
Curve(DDS) 25.415
Slab (/ft) | R-Ø -4.92 20.50
R-5 2ft -5.39 8.75
R-5 4ft -5.49 6.25
R-10 2ft -5.46 7.00
R-10 4ft -5.57 4.25
Intercept .000
Slope(DD) 984.03
Curve(DDS) 69.823 | Unheated Basement (/sf) | R-0 -3.87 3.12 R-11 flr -4.99 1.25 R-19 flr -5.31 .72 R-30 flr -5.51 .38 Intercept531 Slope(DD) 1243.53 Curve(DDS) -103.791 | Infiltration (/sf flr.)
ELF Ach
.0007(.74) .00 5.32
.0005(.52) -2.50 3.24
.0003(.31) -4.46 1.61 | 3.666
5.625
. 625
. Coad | 9 | | | י
ט | 2 4 1 1 1 1 1 | Slope(DD) 677.12
Curve(DDS) 28.602
Heated Basement (/ft) | R-6 -1.19 45.81
R-5 4ft -1.44 37.65
R-5 8ft -1.50 35.31
R-10 4ft -1.52 34.98
R-10 8ft -1.57 33.15
Intercept 27.735
Slope(DD) 492.54
Curve(DDS) -1.008 | Crawl (/sf) | R-0 .00 4.27 R-11 flr .07 4.39 R-19 flr06 4.18 R-30 flr16 4.01 R-49 flr18 3.97 R-49 flr28 3.86 Intercept 3.540 Slope(DD) 688.99 Curve(DDS) -106.426 | Window U-value (/sf) 1-Pane .00 5.30 2-Pane63 .89 3-Pane69 .48 R-107601 | Slope(DD) -24.49
Curve(DDS) 8.535
32.41 MBtu
22.98 MBtu
9.25 MBtu | |--|----------------------------------|---|--|---|-------------------------|---|--|---| | ing Series Two | Delta Component (MBtu) | Ceiling (/sf) R-0 .00 8.82 R-7 -3.34 3.26 R-11 -3.87 2.37 R-19 -4.35 1.57 R-22 -4.50 1.32 R-30 -4.70 .99 R-38 -4.82 .79 R-49 -4.92 .62 R-60 -4.98 .52 | Slope(DD) 1402:43
Curve(DDS) 14.379
Slab (/ft) | R-0 -2.60 -1.35
R-5 2ft -2.68 -3.85
R-6 4ft -2.67 -3.52
R-10 2ft -2.70 -4.52
R-10 4ft -2.66 -3.19
Intercept .000
Slope(DD) -1289.36
Curve(DDS) 102.082 | Unheated Basement (/sf) | R-0
R-11 flr67 3.17
R-19 flr54 3.37
R-3Ø flr47 3.5Ø
Intercept 3.837
Slope(DD) -452.73
Curve(DDS) 29.483 | Infiltration (/sf flr)
ELF Ach
.0007(.63) .00 4.64
.0005(.45) -1.47 3.42
.0003(.27) -3.03 2.11 | Slope/.001ELF 7.354
Curve/.001ELF -1.042
Base Load =
Typical Load =
Residual Load = | | MApartment Prototype Sid
ating Load |) | Wall R-a R-7 R-7 R-17 R-11 R-13 R-13 R-13 R-13 R-13 R-19 R-19 R-19 R-27 R-3 | Slope(DD) 1616.69
Curve(DDS) 119.397
Heated Basement (/ft) | R-6
R-5 4ft -5.40 21.00
R-5 8ft -5.56 15.67
R-10 4ft -5.54 16.17
R-10 8ft -5.73 9.84
Intercept -1.695
Slope(DD) 986.53
Curve(DDS) 6.687 | Crawl (/sf) | R-0 .00 10.04 R-11 flr -4.47 2.59 R-19 flr -5.11 1.53 R-38 flr -5.53 .95 R-49 flr -5.76 .45 Intercept -4.426 Slope(DD) 1687.19 Curva(DDS) 69.095 | Window U-value (/sf) 1-Pane .00 45.38 2-Pane -4.53 13.92 3-Pane -5.32 8.43 R-10 -6.25 1.97 | Slope(DD) 753.69
Curve(DDS) 36.559
29.74 MBtu
11.20 MBtu
3.10 MBtu | | Fort Worth TX WYEC P | Delta Component
(MBtu) (KBtu) | Ceiling (/sf) R-0 .00 15.49 R-7 -5.91 5.63 R-11 -6.86 4.06 R-19 -7.71 2.64 R-22 -7.96 2.21 R-38 -8.52 1.29 R-49 -8.67 1.04 R-60 -8.76 .89 | Slope(DD) 2328.59
Curve(DDS) 47.814
Slab (/ft) | R-0 -5.36 22.17
R-5 2ft -5.75 9.34
R-5 4ft -5.83 6.67
R-10 2ft -5.80 7.50
R-10 4ft -5.89 4.50
Intercept .000
Slope(DD) 1029.58
Curve(DDS) 78.501 | Unheated Basement (/sf) | R-0
R-11 flr -5.48 .92
R-19 fir -5.73 .49
R-30 flr -5.90 .21
Intercept540
Slope(DD) 1019.15
Curve(DDS) -85.977 | Infiltration (/sf flr)
ELF Ach
.0007(.74) .00 5.10
.0005(.52) -2.51 3.01
.0003(.32) -4.40 1.43 | Slope/.001ELF 2.875
Curve/.001ELF 6.302
Base Load = Typical Load = Residual Load = | | | ponent
(KBtu) | (/sf)
6.56
3.35
3.35
2.23
1.91
1.11 | 430.21
39.252
(/ft) | 19.40
16.75
16.33
15.85
15.16
13.16
191.43 | (/sf) | 4.49
4.12
3.91
3.75
3.71
3.324
802.26 | (/sf)
9.26
4.45
2.83
.93 | 400.21
-1.867 | |-----------------|-----------------------|--|----------------------------|--|-----------|--|---|--| | | elta Com
(MBtu) | -3.68
-4.12
-5.22
-5.78
-6.78 | (DD) 1
(DDS) - | -3.69
-4.13
-4.28
-4.28
-4.39
(DD)
(DDS) | | . 68
68
89
- 1 . 13
- 1 . 13
. copt
(00) | . 000
89
-1.19 | (DD)
(DDS)
Btu
Btu
Btu | | ooling Load | | W 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 | Slope
Curve
eated Ba | -6 4ft
-5 4ft
-16 8ft
-10 4ft
-10 8ft
Slope
Curve | - Mer | | indow U-
1-Pane
2-Pane
3-Pane
R-10 | Slope
Curve
47.03 M
19.31 M | | -
000
000 | Component
(KBtu) | (/sf)
13.17
5.28
4.02
2.88
2.88
1.86
1.51
1.51 | 02.40
1.128
(/ft) H | -1.02 R
-1.08 R
-1.14 R
-1.14 R
-78 R
-78 S
-668 | (/sf) C | 2.03 R
2.03 R
3.06 R
3.15 R
3.351
57.81 | sf flr) W
1.47
1.03 | 1.981
.162
. Load = Load = Load = | | o * | elta Comp
(MBtu) (| .00
-12.16
-14.10
-15.84
-16.51
-17.96
-17.96
-18.46 | (00) 27
(00S) -8 | -7.08
-7.09
-7.06
-7.10
-7.10
-7.04
(DD) -2
(DDS) 1 | Basement | -3.69
-2.19
-2.06
-2.06
(DD)
(DDS) | tion (/
.000
67
1.32 | MIELF
MIELF
Base
Typical
Residual | | Series | ۵ | C | Slope
Curve
Slab | -0
-5
2ft
-10 2ft
10 4ft
Slope | nheated E | -0
-11 fr
-19 fr
-30 fr
Inter
Slope
Curve | Infiltrat
ELF Ach
0007(.45)
0005(.32)
0003(.19) | Slope/.Øi | | 5u - | | | | ~ ~ ~ ~ ~ |) | ~ ~ ~ ~ | • • • | | | pe Sid | ponent
(KBtu) | (/sf)
14.3f)
6.833
7.75
7.74
7.76
2.76
2.13 | 710.38
-8.619
(/ft) | 54.85
34.49
28.76
29.67
21.35
3.296
752.24 | (/sf) | 10.17
2.07
.80
.039
.04
.054
.1.669
2203.92
20.288 | (/sf)
57.86
24.96
15.74
4.89 | 4.715 | | Prototype | ita Comp
(MBtu) (| .00
-8.44
-9.64
-11.11
-11.84
-13.00 | (DD) 2
(DDS) sement | -6.55
-9.93
-10.88
-10.73
-12.11
cept
(DD) 1 | | .00
-12.46
-14.42
-15.77
-15.77
-16.49
(DD) 2 | .000
-6.08
-7.78
-9.79 | (DD) 2
(DDS) 2
(Btu
(Btu | | Story |)
0 | ¥
R R R - 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | Slope
Curve
ated Bas | SS 8ft
10 4ft
10 8ft
Interc | - * e | 08 8 9 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 | ndow U-
1-Pane
2-Pane
3-Pane
R-10 | Slope
Curve
72.63 Mi
25.92 MI | | One S | | | Ţ | ~~~~~ | Ç | ~~~~~~

 | ()
W: | 11 11 11 | | TMY | omponent
(KBtu) | (/sf)
17.20
6.76
5.10
3.64
3.04
2.30
1.85
1.85 | 1333.49
72.860
(/ft) | 32.74
17.26
13.46
14.67
9.61
.000
2665.37 | t (/sf) | 5.91
1.84
.84
.17
-1.598
2380.12 | sf fl
6.37
4.21
2.32 | 6.721
3.409
se Load
al Load | | | Delta Com
(MBtu) | ng .00
-16.08
-18.64
-21.91
-21.91
-22.96
-23.65
-24.24 | (S00)
(00) | -10.22
-12.79
-13.42
-13.22
-14.06
(DD)
(DDS) | Basement | 36 39 39 | 8 8 8 4 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 | .001ELF
.001ELF
Bar
Typics
Residus | | Fresno CA | ۵ | C. R 4 C. 1 C. | Slope
Curve | R-6
R-5 2ft
R-5 2ft
R-10 2ft
R-10 4ft
Slope
Curve | Unheated | R-0 -6.
R-11 flr -12.
R-19 flr -14.
R-30 flr -15.
Intercept
Slope(DD) | InfiltrateLF Ach. 0007(.58) | Slope/.0
Curve/.0 | | oo lina Load |)

 | Wall (/sf) R-0 .00 7.10 R-7 -1.71 3.52 R-11 -1.95 3.01 R-13 -2.28 2.31 R-19 -2.45 1.96 R-27 -2.69 1.45 R-34 -2.84 1.14 | Slope(DD) 1450.82
Curve(DDS) -24.262
Heated Basement (/ft) | R-Ø -1.33 33.82
R-5 4ft -1.47 30.32
R-5 8ft -1.52 29.07
R-1Ø 4ft -1.54 28.57
R-1Ø 8ft -1.54 28.57
Intercept 26.937
Slope(DD) 109.09
Curve(DDS) 1.456 | Crawi (/sf) | R-11 flr16 4.20 R-19 flr28 4.00 R-30 flr35 3.88 R-38 flr37 3.85 R-49 flr42 3.77 Slope(DD) 521.15 Curve(DDS) -65.130 | Window U-value (/sf)
1-Pane .00 6.79
2-Pane .57 2.83
3-Pane72 1.78
R-1090 .54 | Slope(DD) 227.87
Curve(DDS) 1.114 | 29.29 MBtu
17.69 MBtu
5.53 MBtu | |---|----------------------------------|--
--|---|---------------------------|---|--|---|--| | Series Two | Delta Component
(MBtu) (KBtu) | Ceiling (/sf) R-0 R-7 -4.93 R-1 R-11 -5.71 4.12 R-19 -6.42 2.94 R-22 -6.69 2.49 R-30 -7.65 1.89 R-49 -7.65 R-49 -7.59 R-60 -7.59 | Slope(DD) 2744.43
Curve(DDS) -74.812
Slab (/ft) | R-0 -2.80 -2.93
R-5 2ft -2.77 -2.18
R-5 4ft -2.75 -1.68
R-10 2ft -2.77 -2.18
R-10 4ft -2.74 -1.43
Intercept .000
Slope(DD) -461.42
Curve(DDS) 18.109 | Unheated Basement (/sf) (| R-0
R-11 flr87 3.02
R-19 flr79 3.15
R-30 flr74 3.24 F
Intercept 3.440
Slope(DD) -262.03
Curve(DDS) 6.006 | Infiltration (/sf flr) W
ELF Ach
.0007(.49) .00 1.23
.0005(.35)46 .85
.0003(.21)89 .49 | Slope/.001ELF 1.542
Curve/.001ELF .313 | Base Load = Typical Load = Residual Load = | | Mid Town Prototype Siding
ating Load | Delta Component
(MBtu) (KBtu) | Wall (/sf) R-0 .000 13.57 R-7 -3.67 5.88 R-11 -4.19 4.78 R-13 -4.75 3.60 R-19 -5.03 3.02 R-27 -5.43 2.18 R-34 -5.67 1.67 | Slope(DD) 2039.96
Curve(DDS) 89.953
Heated Basement (/ft) | R-0 -3.34 55.40
R-5 4ft -4.34 30.40
R-5 8ft -4.58 24.40
R-10 4ft -4.55 25.15
R-10 8ft -4.82 18.40
Intercept 4.699
Slope(DD) 1201.77
Curve(DDS) .908 | Crawl (/sf) | R-0
R-11 flr -4.30 2.09
R-19 flr -4.95 1.01
R-30 flr -5.28 .45
R-38 flr -5.36 .33
R-49 flr -5.5804
Intercept953
Slope(DD) 1729.85
Curve(DDS) 51.079 | Window U-value (/sf) 1-Pane .00 45.56 2-Pane -4.29 15.77 3-Pane -5.16 9.70 R-10 -6.19 2.57 | Slope(
Curve(| 32.49 MBtu
12.03 MBtu
3.07 MBtu | | Fresno CA TMY | Delta Component
(MBtu) (KBtu) | Ceiling (/sf) R-0 .00 17.99 R-7 -6.78 6.68 R-11 -7.87 4.88 R-19 -8.84 3.25 R-22 -9.15 2.74 R-30 -9.57 2.04 R-38 -9.82 1.62 R-49 -10.01 1.30 R-60 -10.14 1.09 | Slope(DD) 2913.86
Curve(DDS) 20.244
Slab (/ft) | R-Ø
R-5 2ft -5.11 11.15
R-5 4ft -5.22 8.40
R-10 2ft -5.19 9.15
R-10 4ft -5.33 5.65
Intercept .000
Slope(DD) 1375.51
Curve(DDS) 56.810 | Unheated Basement (/sf) | R-0
R-11 flr -4.76 1.33
R-19 flr -5.18 .63
R-3Ø flr -5.45 .18
Intercept -1.046
Slope(DD) 1668.03
Curve(DDS) -145.055 | Infiltration (/sf flr) ELF Ach .0007(.58) .00 4.83 .0005(.44) -2.32 2.90 .0003(.27) -4.11 1.41 | 3.04 | Base Load =
Typical Load =
Residual Load = | | | | omponent
(KBtu) | (/sf)
6.82
3.33
2.83 | 400 | 0 <i>©</i> | 1353.02 | (/ft) | 26.77
23.27
22.77
22.27
21.61
19.733
165.60 | (/sf) | | · w | (/sf)
8.32
3.74
2.37
.75 | 319.95
180 | | |----------------------|------------|--|--|--|---|---|----------------------|--|-------------------------|---|---|---|---|---| | | | elta Com
(MBtu) | .000 | 400 | . 8. | (00) 1
(00s) - | sement | -1.24
-1.34
-1.35
-1.37
-1.39
(DD)
(DD) | | | - (\$00)
(00) | | (800)
(800) | Otu
Otu
Otu | | | ng Load | ď | Wa R-0 R-7 | R-13 | 1 10 | Slope | ated Ba | 6 4ft
5 8ft
10 4ft
Interc
Slope | _ *e | 0880H | Curve | 1-Pane
2-Pane
3-Pane
R-10 | Slope | 26.44 ME
15.71 ME
3.78 ME | | | Cooling | | | | | | T | ~ ~ ~ ~ ~ ~ | Ş | 6 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 | | . <u>-</u>
≽ | | B H B | | | Ū | omponent
(KBtu) | (/sf)
14.57
5.79
4.39 | 4.66 | 9000 | 917.57 | (/ft) | -3.73
-3.89
-3.23
-3.73
-2.73
.000
941.30 | (/sf) | | 286.41
12.075 | (/sf flr)
1.23
1.85
.50 | 1.604 | peol – | | Two | | elta Com
(MBtu) | 6.2.6 | 6.8 | -7.77
-7.98
-7.98
-8.11 | (00) 2
(00s) - | | -2.15
-2.16
-2.14
-2.15
-2.13
(00)
(00) | asement | . 24
. 73
. 68 | - (sgg) | | 1ELF
1ELF | Bas
Typica
Residua | | Series | | 9 0 | Ceilin
R-0
R-7 | -22 | R R R R R R R R R R R R R R R R R R R | Slope(
Curve(| Slab | 2ft
4ft
Ø 2ft
Interc
Slope
Curve | eated B | 1 for Inter | lope
Lrve | Infiltrat
ELF Ach
0007(.45)
0005(.32)
0003(.19) | lope/.001
urve/.001 | | | . gu: | | | | | | | | 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 | L'S | ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ | | EE | | | | P!S | | | | | | | | | | | | | | | | | | ponent
(KBtu) | (/sf)
13.30
5.50 | 41.0 | y. ∡. | 768.52
31.163 | (/ft) | 57.78
27.78
20.95
21.61
13.61
-1.797
342.36 | (/sf) | 924 |
637.9
86.16 | (/sf)
43.59
13.97
8.51
2.09 | 815.74
31.639 | | | | | a Component
Itu) (KBtu) | (/sf
.00 13.3
2.47 5.5
83 4.3 | 3.18 3.2 | 3.75 1.4 | 1768.5
131.16 | t (/ft | .16 57.7
.08 27.4
.27 20.9
.25 21.6
.49 13.6
.179 | St | 5.25
5.25
5.58
5.58
5.66
5.88
5.88
5.88 |) 1637.9
S) 86.16 | ue (/sf
.øø 43.5
4.26 13.9
5.ø5 8.5
5.97 2.0 | 815.7
31.63 | 777 | | Prototype | þec | Delta Component
(MBtu) (KBtu) | /sf
.00 13.3
-2.47 5.5 | 3 -3.18 3.2 | -3.75 1.4
-3.75 1.4 | pe(DD) 1768.5
ve(DDS) 131.16 | //t | t -5.08 27.4
t -5.08 27.4
t -5.27 20.9
t -5.25 21.6
t -5.49 13.6
ercept -1.79
ve(DD) 1342.3 | St | -4.60 9.8
-5.25 1.0
-5.58 .5
-5.66 .4 | (DD) 1637.9
(DDS) 86.16 | U-value (/sf
ane .00 43.5
ane -4.26 13.9
ane -5.05 8.5 | pe(DD) 815.7
ve(DDS) 31.63 | a MBtu
a MBtu
2 MBtu | | Prototype | ng Loa | elta (
(MBtu) | (/sf
.00 13.3
-2.47 5.5 | -13 -3.18 3.2
-19 -3.36 2.7 | -21 -5.00 1.9
-34 -3.75 1.4 | e(DD) 1768.5
e(DDS) 131.16 | ated Basement (/ft | 6 4ft -5.08 27.4
5 8ft -5.27 20.9
10 4ft -5.25 21.6
10 8ft -5.45 13.6
10 10 13.6
10 10 13.6
10 10 13.6
10 10 13.6 | St | 1 flr -4.60 2.1
9 flr -5.25 1.0
7 flr -5.58 .5
8 flr -5.66 .4
9 flr -5.66 .4 | lope(DD) 1637.9
urve(DDS) 86.16 | indow U-value (/sf
1-Pane .00 43.5
2-Pane -4.26 13.9
3-Pane -5.05 8.5
R-10 -5.97 2.0 | e(DD) 815.7
e(DDS) 31.63 | | | rototype | eating Loa | Delta (
(MBtu) | Wall (/sf
R-0 .00 13.3
R-7 -2.47 5.5
R-11 -2 83 4 3.5 | R-13 -3.18 3.2
R-19 -3.36 2.7 | R-34 -3.75 1.4 | Slope(DD) 1768.5
Curve(DDS) 131.16 | Heated Basement (/ft | R-0
R-5 4ft -5.08 27.4
R-5 8ft -5.27 20.9
R-10 4ft -5.25 21.6
R-10 8ft -5.49 13.6
Intercept -1.79
Slope(DD) 1342.3
Curve(DDS) 2.75 | Crawl (/sf | R-0
R-11 flr -4.60 2.1
R-19 flr -5.25 1.0
R-30 flr -5.58 .5
R-38 flr -5.66 .4
R-49 flr -5.88 .0 | Slope(DD) 1637.9
Curve(DDS) 86.16 | r) Window U-value (/sf
1-Pane .00 43.5
2-Pane -4.26 13.9
3-Pane -5.05 8.5
R-10 -5.97 2.0 | Slope(DD) 815.7
Curve(DDS) 31.63 | = 30.60 MB
= 10.80 MB
= 3.52 MB | | Prototype | ating Loa | ent Delta (
tu) (MBtu) | sf) Wall (/sf
.37 R-0 .00 13.3
.66 R-7 -2.47 5.5 | .11 R-13 -3.18 3.2
.60 R-19 -3.36 2.7 | -21 -5.00 1.9
-34 -3.75 1.4 | 728.53 Slope(DD) 1768.5
62.511 Curve(DDS) 131.16 | eated Basement (/ft | 28.45 R-0 -4.16 57.7 12.95 R-5 4ft -5.08 27.4 9.61 R-10 4ft -5.27 20.9 10.61 R-10 4ft -5.25 21.6 6.61 R-10 4ft -5.49 13.6 000 Slope(DD) 1342.3 61.106 Curve(DDS) 2.75 | (/sf) Crawl (/sf | 2.89 R-0
.98 R-11 flr -4.60 2.1
.41 R-19 flr -5.25 1.0
.05 R-30 flr -5.58 .5
R-38 flr -5.66 .4
R-49 flr -5.88 .0 | 355.80 Slope(DD) 1637.9
18.553 Curve(DDS) 86.16 |) Window U-value (/sf
1-Pane .00 43.5
2-Pane -4.26 13.9
3-Pane -5.05 8.5
R-10 -5.97 2.0 | lope(DD) 815.7
urve(DDS) 31.63 | se Load = 30.60 MB
al Load = 10.80 MB
al Load = 3.52 MB | | MApartment Prototype | eating Loa | a Component Delta (
tu) (KBtu) (MBtu) | (/sf) Wall (/sf)
.00 18.37 R-0 .00 13.3
7.03 6.66 R-7 -2.47 5.5 | 9.16 3.11 R-13 -3.18 3.2
9.46 2.60 R-19 -3.36 2.7 | .92 K-2/ -3.76 1.3
.51 R-34 -3.75 1.4
.22 | 2728.53 Slope(DD) 1768.5
Curve(DDS) 131.16 | Heated Basement (/ft | .65 28.45 R-0 -4.16 57.7 .51 12.95 R-5 4ft -5.08 27.4 .61 9.61 R-10 4ft -5.27 20.9 .58 10.61 R-10 4ft -5.49 13.6 .70 .0000 Intercept -1.79 \$10000 \$10000 \$10000 \$10000 \$10000 \$10000 \$10000 \$10000 \$10000 \$10000 \$10000 \$10000 \$10000 \$100 | sement (/sf) Crawl (/sf | 16 2.89 R-0 .00 9.8
31 .98 R-11 flr -4.60 2.1
65 .41 R-19 flr -5.25 1.0
87 .05 R-30 flr -5.58 .5
R-38 flr -5.66 .4
R-49 flr -5.88 .0 | 1355.80 Slope(DD) 1637.9
-118.553 Curve(DDS) 86.16 | on (/sf flr) Window U-value (/sf
.00 4.51 1-Pane .00 43.5
-2.31 2.59 2-Pane -4.26 13.9
-4.01 1.17 3-Pane -5.05 8.5
R-10 -5.97 2.0 | ELF 2.000 Slope(DD) 815.7
ELF 6.354 Curve(DDS) 31.63 | Base Load = 30.60 MB
oical Load = 10.80 MB
idual Load = 3.52 MB | | MApartment Prototype | eating Loa | Component Delta (
u) (KBtu) (MBtu) | (/sf) Wall (/sf) Wall (/sf) Wall (/sf) | 2 -9.16 3.11 R-13 -3.18 3.2
-9.46 2.60 R-19 -3.36 2.7 | 9.87 1.92 K-27 -3.06 1.9
0.12 1.51 R-34 -3.75 1.4
0.29 1.22 0.40 1.04 | 728.53 Slope(DD) 1768.5
62.511 Curve(DDS) 131.16 | Heated Basement (/ft | 5 28.45 R-0 -4.16 57.7
1 12.95 R-5 4ft -5.08 27.4
1 9.61 R-10 4ft -5.27 20.9
8 10.61 R-10 4ft -5.25 21.6
6 6.61 R-10 8ft -5.49 13.6
1617.42 Slope(DD) 1342.3
61.106 Curve(DDS) 2.75 | ement (/sf) Crawl (/sf | 16 2.89 R-0 .00 9.8
31 .98 R-11 flr -4.60 2.1
65 .41 R-19 flr -5.25 1.0
87 .05 R-30 flr -5.58 .5
R-38 flr -5.66 .4
R-49 flr -5.88 .0 | 1355.80 Slope(DD) 1637.9
-118.553 Curve(DDS) 86.16 | n (/sf flr) Window U-value (/sf
.00 4.51 1-Pane .00 43.5
2.31 2.59 2-Pane -4.26 13.9
4.01 1.17 3-Pane -5.05 8.5
R-10 -5.97 2.0 | 2.000 Slope(DD) 815.7
6.354 Curve(DDS) 31.63 | Base Load = 30.60 MB
ical Load = 10.80 MB
dual Load = 3.52 MB | | | ** | component
(KBtu) | 200 | ο. 4. | | 310.67
-7.708 | (/ft) | | (/sf) | 11.65 | 1.662
5.55
13.815 | 1.34
1.34
.85
.55 | 90.00
-1.487 | | |-----------------------|--------------|----------------------------------|--|---|--|--|-----------------------|---|-------------------------|---|---|---|---|--| | | Coofing Load | Delta Co
(MBtu) | 6.8 | 113 | -27 -1.2
-34 -1.3 | Slope(DD)
Curve(DDS) | Heated Basement | R-0
R-5 4ft -2.10
R-5 8ft -2.08
R-10 4ft -2.14
R-10 8ft -2.14
Intercept Slope(DD)
Curve(DDS) | Crawl | R-0
R-11 f r . 47
R-19 f r . 50
R-38 f r . 51
R-38 f r . 51 | Intercept
Slope(DD)
Curve(DDS) | Window U-value 1-Pane .000 2-Pane09 3-Pane15 R-1021 | Stope(DD)
Curve(DDS) | 10.22 MBtu
1.70 MBtu
-2.07 MBtu | | | ŭ | Component
(KBtu) | (/sf)
3.70
1.45 | | 24.00 | 717.58
-15.876 | (/ft) | -2.75
-1.91
-1.49
-1.73
-1.12
.242
-2.42
626.66 | . (/sf) | .10
.80
1.00
1.13 | 1.482
477.14
40.459 | (/sf flr)
.18
.13 | .260 | E Load | | ing Series Two | | Delta Cor
(MBtu) | eiling
-0
-7
-3.4 | -11 -4.0
-19 -4.5
-22 -4.6 | R-38 -4.93
R-38 -5.08
R-49 -5.21
R-60 -5.29 | Slope(DD)
Curve(DDS) - | Slab | R-Ø -2.50
R-5 2ft -2.36
R-5 4ft -2.29
R-1Ø 2ft -2.23
R-1Ø 4ft -2.23
Slope(DD) - Curve(DDS) | Unheated Basement | R-0 -1.89
R-11 flr81
R-19 flr50
R-30 flr30 | Intercept
Slope(DD) -
Curve(DDS) | Infiltration (ELF Ach .0007(.58) .0007(.58) .0006.008(.41)08 | Slope/.001ELF
Curve/.001ELF | Baso
Typica
Residua | | s Story Prototype Sid | ating Load | Delta Component
(MBtu) (KBtu) | (/
.00 41
-23.66 20 | -11 -27.03 17.5
-13 -31.20 13.8
-19 -33.26 12.0 | -27 -37.03 8.6
-34 -39.34 6.5 | Slope(DD) 8628.80
Curve(DDS) -166.309 | Heated Basement (/ft) | R-0
R-5 4ft -19.45 93.48
R-5 8ft -22.27
76.49
R-10 4ft -21.28 82.46
R-10 8ft -25.61 56.37
Intercept .0000
Slope(DD) 7255.03
Curve(DDS) -97.914 | Crawl (/sf) | R-0
R-11 f r -36.96 -1.29
R-19 f r -43.18 -5.33
R-30 f r -47.10 -7.88
R-38 f r -48.00 -8.46
R-49 f r -50.58 -10.14 | Intercept -13.
Slope(DD) 7822
Curve(DDS) -131. | Window U-value (/sf) 1-Pane .00 202.24 2-Pane -19.71 95.58 3-Pane -26.14 60.77 R-10 -33.71 19.82 | Slope(DD) 8502.72
Curve(DDS) -31.905 | 224.05 MBtu
80.52 MBtu
13.26 MBtu | | Great Falls MT WYEC | H | Delta Component
(MBtu) (KBtu) | eiling (/sf
-0 .00 43.2
-7 -39.89 17.3 | -11 -40.20 13.1
-19 -51.98 9.4
-22 -54.21 8.0 | R-30 -57.19 6.10
R-38 -58.99 4.93
R-49 -60.61 3.88
R-60 -61.65 3.20 | lope(DD) 88
urve(DDS) -26 | Slab (/ft) | R-6 -24.94 60.41 R-5 2ft -31.48 21.01 R-5 4ft -33.48 8.96 R-10 2ft -32.71 13.60 R-10 4ft -35.52 -3.33 Intercept -40.277 Slope(DD) 16142.20 Curve(DDS) -548.839 | Unheated Basement (/sf) | R-11 flr -33.50 .95
R-19 flr -39.57 -2.99
R-30 flr -43.47 -5.52 | Intercept -12.387
Slope(DD) 9359.54
Curve(DDS) -804.004 | Infiltration (/sf flr)
ELF Ach
.0007(.98) .00 27.12
.0005(.72)-12.12 19.25
.0003(.43)-24.09 11.48 | Slope/.001ELF 37.890
Curve/.001ELF 1.218 | Base Load = Typical Load = Residual Load = | | | Component
(KBtu) | (/sf)
1.76
1.95
1.95
1.95
1.94
1.94
1.94 | 422.36
-17.790
(/ft) | -1.58
-1.08
-1.08
-1.08
-1.08
-1.08
-1.08
-1.08
-1.08
-1.08
-1.08
-1.08
-1.08
-1.08
-1.08
-1.08
-1.08
-1.08
-1.08
-1.08
-1.08
-1.08
-1.08
-1.08
-1.08
-1.08
-1.08
-1.08
-1.08
-1.08
-1.08
-1.08
-1.08
-1.08
-1.08
-1.08
-1.08
-1.08
-1.08
-1.08
-1.08
-1.08
-1.08
-1.08
-1.08
-1.08
-1.08
-1.08
-1.08
-1.08
-1.08
-1.08
-1.08
-1.08
-1.08
-1.08
-1.08
-1.08
-1.08
-1.08
-1.08
-1.08
-1.08
-1.08
-1.08
-1.08
-1.08
-1.08
-1.08
-1.08
-1.08
-1.08
-1.08
-1.08
-1.08
-1.08
-1.08
-1.08
-1.08
-1.08
-1.08
-1.08
-1.08
-1.08
-1.08
-1.08
-1.08
-1.08
-1.08
-1.08
-1.08
-1.08
-1.08
-1.08
-1.08
-1.08
-1.08
-1.08
-1.08
-1.08
-1.08
-1.08
-1.08
-1.08
-1.08
-1.08
-1.08
-1.08
-1.08
-1.08
-1.08
-1.08
-1.08
-1.08
-1.08
-1.08
-1.08
-1.08
-1.08
-1.08
-1.08
-1.08
-1.08
-1.08
-1.08
-1.08
-1.08
-1.08
-1.08
-1.08
-1.08
-1.08
-1.08
-1.08
-1.08
-1.08
-1.08
-1.08
-1.08
-1.08
-1.08
-1.08
-1.08
-1.08
-1.08
-1.08
-1.08
-1.08
-1.08
-1.08
-1.08
-1.08
-1.08
-1.08
-1.08
-1.08
-1.08
-1.08
-1.08
-1.08
-1.08
-1.08
-1.08
-1.08
-1.08
-1.08
-1.08
-1.08
-1.08
-1.08
-1.08
-1.08
-1.08
-1.08
-1.08
-1.08
-1.08
-1.08
-1.08
-1.08
-1.08
-1.08
-1.08
-1.08
-1.08
-1.08
-1.08
-1.08
-1.08
-1.08
-1.08
-1.08
-1.08
-1.08
-1.08
-1.08
-1.08
-1.08
-1.08
-1.08
-1.08
-1.08
-1.08
-1.08
-1.08
-1.08
-1.08
-1.08
-1.08
-1.08
-1.08
-1.08
-1.08
-1.08
-1.08
-1.08
-1.08
-1.08
-1.08
-1.08
-1.08
-1.08
-1.08
-1.08
-1.08
-1.08
-1.08
-1.08
-1.08
-1.08
-1.08
-1.08
-1.08
-1.08
-1.08
-1.08
-1.08
-1.08
-1.08
-1.08
-1.08
-1.08
-1.08
-1.08
-1.08
-1.08
-1.08
-1.08
-1.08
-1.08
-1.08
-1.08
-1.08
-1.08
-1.08
-1.08
-1.08
-1.08
-1.08
-1.08
-1.08
-1.08
-1.08
-1.08
-1.08
-1.08
-1.08
-1.08
-1.08
-1.08
-1.08
-1.08
-1.08
-1.08
-1.08
-1.08
-1.08
-1.08
-1.08
-1.08
-1.08
-1.08
-1.08
-1.08
-1.08
-1.08
-1.08
-1.08
-1.08
-1.08
-1.08
-1.08
-1.08
-1.08
-1.08
-1.08
-1.08
-1.08
-1.08
-1.08
-1.08
-1.08
-1.08
-1.08
-1.08
-1.08
-1.08
-1.08
-1.08
-1.08
-1.08
-1.08
-1.08
-1.08
-1.08
-1.08
-1.08
-1.08
-1.08
-1.08
-1.08
-1.08
-1.08
-1.08
-1.08
-1.08
-1.08
-1.08
-1.08
-1.08
-1.08
-1.08
-1.08
-1.08
-1.08
-1.08
-1.08
-1.08
-1.08
-1.08
-1.08 | | 9.68 | 8.51.1.0 | 18.44
263 | |---|----------------------------------|--|--|---|--|--|--|--| | ooling Load | Delta Co
(MBtu) | Wall
R-0
R-7
R-1139
R-1353
R-1953
R-2764
R-3468 | Slope(DD)
Curve(DDS)
Heated Basement | R-071
R-5 4ft74
R-5 8ft72
R-10 4ft75
R-10 8ft75
Intercept Slope(DD)
Slope(DD) | R-0
R-11 flr .23
R-19 flr .26
R-38 flr .26
R-38 flr .26 | Intercept
Slope(DD)
Curve(DDS) | #Indow U-va
1-Pane
2-Pane
3-Pane
R-10 | Slope(DD)
Curve(DDS)
6.98 MBtu
3.40 MBtu
1.21 MBtu | | g Series Two | Deita Component
(MBtu) (KBtu) | Ceiling (/sf) R-0 .00 4.05 R-7 -1.45 1.63 R-11 -1.68 1.24 R-19 -1.89 .90 R-22 -1.97 .76 R-38 -2.08 .59 R-49 -2.21 .37 R-60 -2.25 .30 | Slope(DD) 844.38
Curve(DDS) -27.311
Slab (/ft) | R-0 -1.01 -8.33 R-5 2ft95 -6.83 R-5 4ft92 -6.08 R-10 2ft94 -6.58 R-10 4ft91 -5.83 Intercept -4.271 Slope(DD) -664.20 Curve(DDS) 23.581 | Unheated Basement (/sf) R-8 - 7106 R-11 flr30 .63 R-19 flr19 .81 R-30 flr12 .93 | 1.241
lope(DD) -424.40
lrve(DDS) 33.457 | Infiltration (/sr Tir)
ELF Ach
.0007(.58) .00 .07
.0005(.41)06 .02
.0003(.25)0901 | Slope/.001ELF125
Curve/.001ELF .313
Base Load =
Typical Load =
Residual Load = | | Mid Town Prototype Sidin
eating Load | Delta Component
(MBtu) (KBtu) | Wall R-0 R-0 R-7 -10.17 R-7 -10.17 19.36 R-11 -11.62 R-13 -13.31 R-19 -14.15 11.01 R-27 -15.62 R-34 -16.53 6.01 | Slope(DD) 7769.70
Curve(DDS) -37.520
Heated Basement (/ft) | 0 4ft -10.81 9
5 8ft -11.55
10 4ft -11.37 8
10 8ft -12.45 5
Intercept 724
Slope(DD) 724 | Crawl R-0 R-11 fir -13.51 2.10 R-19 fir -15.78 -1.68 R-30 fir -17.20 -4.05 R-30 fir -17.50 -4.05 R-30 fir -17.50 -4.05 | Intercept -9
Slope(DD) 726
Curve(DDS) -112 | r) Window
U-value (/sf) 1-Pane .00 184.69 2-Pane -14.67 82.81 3-Pane -19.05 52.40 R-10 -24.20 16.63 | Slope(DD) 7079.01
Curve(DDS) -3.154
= 109.31 MBtu
= 36.24 MBtu | | Great Falls MT WYEC | Delta Component
(MBtu) | (/ 8 | Ope (DD) 8563.4
 urve (DDS) -155.39 | 2ft -13.39 59.
4ft -14.43 8.
4ft -14.43 8.
2ft -14.26 12.
4ft -14.88 -2.
ntercept -35.6
ilope(DD) 14116.
urve(DDS) -392.2 | | Intercept -7.544
Slope(DD) 7254.65
Curve(DDS) -724.787 | Infiltration (/sf flr
ELF Ach
.00007(***) .00 24.87
.0005(.74) -9.12 17.07
.0003(.44)-17.71 9.91 | Slope/.001ELF 31.374
Curve/.001ELF 5.521
Base Load
Typical Load
Residual Load | | | Cooling Load | Delta Component
(MBtu) (KBtu) | Wall (/sf) R-0 . 00 1.69 R-725 . 92 R-1128 . 81 R-1334 . 63 R-2741 .40 R-32 | Slope(DD) 416.08
Curve(DDS) -18.894
Heated Basement (/ft) | R-Ø 4ft51 -1.47 R-5 8ft53 -1.97 R-1Ø 4ft51 -1.47 R-1Ø 8ft51 -1.30 Intercept .000 Slope(DD) -177.72 Curve(DDS) 3.829 | Crawl (/sf) | R-0 .00 .78 R-11 fir .19 1.11 R-19 fir .20 1.12 R-30 fir .20 1.12 R-38 fir .20 1.12 R-49 fir .20 1.12 Slope(DD) 36.87 Curve(DDS) -19.232 | Window U-value (/sf) 1-Pane .00 .91 2-Pane06 .49 3-Pane09 .32 R-1012 .11 | Slope(DD) 47.72
Curve(DDS)505
5.81 MBtu
2.62 MBtu
.31 MBtu | |--------------------------|--------------|----------------------------------|--|---|--|-------------------------|--|--|--| | ing Series Two | ŭ | Delta Component
(MBtu) (KBtu) | Ceiling (/sf) R-0 R-0 R-1 R-1 R-11 R-11 R-19 R-22 R-36 R-36 R-38 R-38 R-38 R-38 R-38 R-38 R-38 R-38 | Slope(DD) 923.28
Curve(DDS) -37.920
Slab (/ft) | R-062 -4.80
R-5 2ft57 -3.47
R-10 2ft56 -2.97
R-10 4ft56 -3.14
R-10 4ft54 -2.30
Intercept312
Slope(DD) -917.53
Curve(DDS) 46.476 | Unheated Basement (/sf) | R-0
R-11 flr23 .39
R-19 flr14 .55
R-30 flr09 .64
Intercept .913
Slope(DD) -370.41
Curve(DDS) 34.714 | Infiltration (/sf flr)
ELF Ach
.0007(.58) .00 .18
.0005(.41)05 .13
.0003(.25)12 .08 | Slope/.001ELF .292
Curve/.001ELF052
Base Load =
Typical Load =
Residual Load = | | MApartment Prototype Sid | eating Load | Delta Component
(MBtu) (KBtu) | Wali
R-0
R-1
R-11
R-13
R-13
R-13
R-19
R-19
R-19
R-27
R-27
R-27
R-27
R-34
R-34
R-34
R-34
R-34
R-34
R-34
R-34
R-34
R-34
R-34
R-34
R-34
R-34
R-34
R-34
R-34
R-34
R-34
R-34
R-34
R-34
R-34
R-34
R-34
R-34
R-34
R-34
R-34
R-34
R-34
R-34
R-34
R-34
R-34
R-34
R-34
R-34
R-34
R-34
R-34
R-34
R-34
R-34
R-34
R-34
R-34
R-34
R-34
R-34
R-34
R-34
R-34
R-34
R-34
R-34
R-34
R-34
R-34
R-34
R-34
R-34
R-34
R-34
R-34
R-34
R-34
R-34
R-34
R-34
R-34
R-34
R-34
R-34
R-34
R-34
R-34
R-34
R-34
R-34
R-34
R-34
R-34
R-34
R-34
R-34
R-34
R-34
R-34
R-34
R-34
R-34
R-34
R-34
R-34
R-34
R-34
R-34
R-34
R-34
R-34
R-34
R-34
R-34
R-34
R-34
R-34
R-34
R-34
R-34
R-34
R-34
R-34
R-34
R-34
R-34
R-34
R-34
R-34
R-34
R-34
R-34
R-34
R-34
R-34
R-34
R-34
R-34
R-34
R-34
R-34
R-34
R-34
R-34
R-34
R-34
R-34
R-34
R-34
R-34
R-34
R-34
R-34
R-34
R-34
R-34
R-34
R-34
R-34
R-34
R-34
R-34
R-34
R-34
R-34
R-34
R-34
R-34
R-34
R-34
R-34
R-34
R-34
R-34
R-34
R-34
R-34
R-34
R-34
R-34
R-34
R-34
R-34
R-34
R-34
R-34
R-34
R-34
R-34
R-34
R-34
R-34
R-34
R-34
R-34
R-34
R-34
R-34
R-34
R-34
R-34
R-34
R-34
R-34
R-34
R-34
R-34
R-34
R-34
R-34
R-34
R-34
R-34
R-34
R-34
R-34
R-34
R-34
R-34
R-34
R-34
R-34
R-34
R-34
R-34
R-34
R-34
R-34
R-34
R-34
R-34
R-34
R-34
R-34
R-34
R-34
R-34
R-34
R-34
R-34
R-34
R-34
R-34
R-34
R-34
R-34
R-34
R-34
R-34
R-34
R-34
R-34
R-34
R-34
R-34
R-34
R-34
R-34
R-34
R-34
R-34
R-34
R-34
R-34
R-34
R-34
R-34
R-34
R-34
R-34
R-34
R-34
R-34
R-34
R-34
R-34
R-34
R-34
R-34
R-34
R-34
R-34
R-34
R-34
R-34
R-34
R-34
R-34
R-34
R-34
R-34
R-34
R-34
R-34
R-34
R-34
R-34
R-34
R-34
R-34
R-34
R-34
R-34
R-34
R-34
R-34
R-34
R-34
R-34
R-34
R-34
R-34
R-34
R-34
R-34
R-34
R-34
R-34
R-34
R-34
R-34
R-34
R-34
R-34
R-34
R-34
R-34
R-34
R-34
R-34
R-34
R-34
R-34
R-34
R-34
R-34
R-34
R- | Slope(DD) 7502.64
Curve(DDS) 20.867
Heated Basement (/ft) | R-Ø -10.39 188.76
R-5 4ft -12.60 115.26
R-5 8ft -13.26 93.09
R-10 4ft -13.11 98.26
R-10 8ft -14.04 67.09
Intercept .000
Slope(DD) 8319.41
Curve(DDS) -84.751 | Crawi (/sf) | R-0 .00 26.75 R-11 flr -13.94 3.52 R-19 flr -16.23 -29 R-38 flr -17.67 -2.70 R-38 flr -18.06 -3.25 R-49 flr -18.95 -4.83 Intercept -8.386 Slope(DD) 7294.79 Curve(DDS) -86.178 | Window U-value (/sf) 1-Pane .00 183.76 2-Pane -14.89 80.36 3-Pane -19.16 50.73 R-10 -24.17 15.88 | Slope(DD) 6730.81
Curve(DDS) 8.706
103.21 MBtu
33.35 MBtu
5.56 MBtu | | Great Falls MT WYEC | H | Delta Component
(MBtu) (KBtu) | Ceiling (/sf) R-0 .00 43.94 R-7 -16.20 16.94 R-11 -18.79 12.63 R-19 -21.11 8.76 R-22 -21.93 7.39 R-30 -23.02 5.57 R-38 -23.69 4.46 R-49 -24.24 3.54 R-60 -24.60 2.94 | Slope(DD) 8029.77
Curve(DDS) -104.329
Slab (/ft) | R-0 -13.55 83.42
R-5 2ft -14.84 40.42
R-5 4ft -15.22 27.92
R-10 2ft -15.07 32.76
R-10 4ft -15.59 15.59
Intercept -21.027
Slope(DD) 15780.18
Curve(DDS) -461.812 | Unheated Basement (/sf) | R-0 -10.39 9.44 R-11 flr -14.30 2.92 R-19 flr -15.83 .37 R-30 flr -16.82 -1.27 Intercept -5.910 Slope(DD) 6423.47 Curve(DDS) -668.967 | Infiltration (/sf flr)
ELF Ach
.0007(***) .00 24.39
.0005(.74) -9.12 16.79
.0003(.44)-17.63 9.70 | Slope/.001ELF 30.437 Curve/.001ELF 6.303 Base Load = Typical Load = Residual Load = | | Cooling Load | Delta Component
(MBtu) (KBtu) | Wall (/sf) R-0 .00 1.96 R-7 -1.96 .21 R-11 -2.2404 R-13 -2.4818 R-27 -2.3817 R-34 -2.3413 | Slope(DD) -299.19
Curve(DDS) 123.337
Heated Basement (/ft) | R-Ø63 33.02
R-S 4ft .26 38.38
R-E 8ft .41 39.29
R-10 4ft
.77 41.46
Intercept 45.601
Slope(DD) -479.10
Curve(DDS) 3.683 | R-0 3.97 R-11 flr 1.28 4.80 R-19 flr 1.03 4.64 R-30 flr 92 4.57 R-38 flr 90 4.55 R-49 flr 83 4.51 Intercept 4.222 Slope(DD) 523.16 Curve(DDS) -111.630 | Window U-value (/sf) 1-Pane .00 -23.54 2-Pane 1.28 -16.61 3-Pane 2.34 -10.86 R-10 3.59 -4.11 | Slope(DD) -1830.71
Curve(DDS) 35.576
63.62 MBtu
42.75 MBtu
19.94 MBtu | |--|----------------------------------|---|--|---|--|--|---| | 000 | Delta Component
(MBtu) (KBtu) | Ceiling (/sf) R-0 R-0 R-7 -8.30 2.79 R-11 -9.62 1.93 R-19 -10.81 1.16 R-22 -11.12 .96 R-38 -11.78 .53 R-49 -11.91 .44 R-60 -12.00 .38 | Slope(DD) 959.56
Curve(DDS) 70.790
Slab (/ft) | R-0 -6.1205
R-5 2ft -6.1311
R-5 4ft -6.1417
R-10 2ft -6.1523
R-10 4ft -6.1523
R-10 4ft -6.1523
Slope(DD) -64.53
Curve(DDS) 6.203 | R-0
R-11 flr .21 4.11
R-19 flr .11 4.04
R-30 flr .04 3.99
Intercept 3.810
Slope(DD) 285.94
Curve(DDS) -65.286 | Infiltration (/sf flr)
ELF Ach
.0007(.68) .00 4.47
.0005(.48) -1.69 3.37
.0003(.29) -3.60 2.13 | Slope/.001ELF 7.630
Curve/.001ELF -1.786
Base Load =
Typical Load =
Residual Load = | | une story Frototype sid
eating Load | Delta Component
(MBtu) (KBtu) | Wall R-0 .00 .08 R-7 .02 R-11 .00 .00 R-11 R-13 .00 .00 R-27 .00 .00 R-34 .00 .00 R-34 .00 .00 | Slope(DD) -3.50
Curve(DDS) 3.427
Heated Basement (/ft) | R-00903 R-5 4ft1010 R-5 8ft1010 R-10 4ft1010 R-10 8ft1010 Intercept076 Slope(DD) -2.99 Curve(DDS) .113 Crawl (/sf) | 00
11 flr06
19 flr06
38 flr06
49 flr06
5lope(DD) -6
Curve(DDS) 2. | r) Window U-value (/sf) 1-Pane .00 .20 2-Pane0402 3-Pane0402 R-100402 | Slope(DD) -8.68
Curve(DDS) .615
= .78 MBtu
= .06 MBtu | | ¥
¥ | <pre>(MBtu) (KBtu)</pre> | (/sf)
(90 (35)
(49 (38)
(49 (98)
(55 (-01)
(55 (-01)
(55 (-01)
(55 (-01) |) -20.15
S) 13.383
(/ft) | 0903
08 .03
08 .03
08 .03
08 .03
(OD) 13.87
(DD) -1.816
Basement (/sf) | 6969691661616161616161616161616263 | on (/sf flr
.0001
0202
02 | .001ELF130
.001ELF .162
Base Load
Typical Load
Residual Load | | | ooling Load | Delta Component
(MBtu) (KBtu) |)
88 | -11637
-13658 | -27668
-34465 | Slope(DD) -723.21
Curve(DDS) 153.501 | Heated Basement (/ft) | R-6
R-5 4ft .26 61.84
R-5 8ft .27 62.09
R-10 4ft .30 62.84
R-10 8ft .39 65.09
Intercept 69.472
Slope(DD) -526.05
Curve(DDS) 3.813 | Crawl (/sf) | R-11 flr .69 4.84 R-19 flr .66 4.79 R-30 flr .66 4.79 R-30 flr .66 4.79 R-30 flr .66 4.79 | Intercept 4.58
Slope(DD) 364.0
Curve(DDS) -131.46 | Window U-value (/sf) 1-Pane .00 -27.61 2-Pane 1.44 -17.61 3-Pane 2.33 -11.45 R-10 3.37 -4.20 | Slope(DD) -1859.78
Curve(DDS) 30.837 | 45.93 MBtu
38.41 MBtu
24.01 MBtu | |---------------------------|-------------|----------------------------------|---|-------------------------------------|--|---|-----------------------|---|---------------------------|---|---|--|---|--| | Series Two | ŭ | Delta Component
(MBtu) (KBtu) | (/
-0 .00 5
-7 -2.71 1 | -11 -3.14
-19 -3.53
-22 -3.54 | R-38 -3.56 .02
R-38 -3.56 .02
R-49 -3.5902
R-60 -3.6004 | Slope(DD) -139.31
Curve(DDS) 192.980 | Slab (/ft) | -0 -2.41 -4.91
-5 2ft -2.42 -5.16
-16 4ft -2.42 -5.16
-10 2ft -2.42 -5.16
-10 4ft -2.36 -3.66
Intercept .000
Slope(DD) -1718.74
Curve(DDS) 125.667 | Unheated Basement (/sf) | -0 3.69
-11 flr .45 4.44
-19 flr .49 4.51
-30 flr .52 4.56 | Intercept 4.635
Slope(DD) -86.18
Curve(DDS) -19.181 | Infiltration (/sf flr) ELF Ach 0007(.68) .00 3.22 0005(.48)94 2.43 0003(.28) -2.01 1.54 | Slope/.001ELF 5.542
Curve/.001ELF -1.354 | Base Load =
Typical Load =
Residual Load = | | Mid Town Prototype Siding | ting Load | Delta Component
(MBtu) (KBtu) | 9.00 | -1163
-1363
-1963 | -2703 - | Slope(DD)
Curve(DDS) | Heated Basement (/ft) | R-00300 R
R-5 4ft0300 R
R-5 8ft0300 R
R-10 4ft0300 R
R-10 8ft0300 R
Slope(DD)000 Curve(DDS) | Crawl (/sf) U | R-0 .05 R
R-11 flr02 .02 R
R-19 flr02 .02 R
R-30 flr02 .02 R
R-49 flr02 .02 | Intercept
Slope(DD)
Curve(DDS) 2 | Window U-value (/sf) 1-Pane .00 .06 .2-Pane010101010101 | Slope(DD) -2.78
Curve(DDS) .197 | .21 MBtu
.01 MBtu
.04 MBtu | | Honolulu HI TMY M | Неа | Delta Component
(MBtu) (KBtu) | , % % % % % % % % % % % % % % % % % % % | -1112 .0
-19130
-22130 | R-36 13 | lope(DD) -12.23
urve(DDS) 8.119 | Slab (/ft) | R-6 | Unheated Basement (/sf) (| 5555 | Intercept000
Slope(DD) .00
Curve(DDS) .000 | Infiltration (/sf flr) V
ELF Ach
.0007(.52) .0001
.0005(.37)0102
.0003(.22)0102 | Slope/.001ELF083
Curve/.001ELF .104 | Base Load = Typical Load = Residual Load = | | Cooling Load | Delta Component
(MBtu) (KBtu) | Wail (/sf) R-0 .0034 R-733 -1.38 R-1138 -1.52 R-1326 -1.18 R-1921 -1.00 R-271787 R-341478 | Slope(DD) -1074.69
Curve(DDS) 187.817
Heated Basement (/ft) | R-0 .00 54.87 R-5 4ft .26 63.70 R-5 8ft .35 66.37 R-10 4ft .35 66.37 R-10 8ft .41 68.53 Intercept 74.496 Slope(DD) -633.99 Curve(DDS) 2.609 | Crawl (/sf) | R-0
R-11 flr .74 3.98
R-19 flr .86 4.19
R-30 flr .93 4.30
R-38 flr .95 4.33
R-49 flr 1.00 4.40
Intercept 4.47
Slope(DD) -152.33
Curve(DDS) -90.429 | Window U-value (/sf)
1-Pane .00 -27.48
2-Pane 1.50 -17.10
3-Pane 2.36 -11.10
R-10 3.38 -4.04 | Slope(DD) -1785.91
Curve(DDS) 28.217
43.43 MBtu
36.60 MBtu
22.04 MBtu | |--|----------------------------------|---|---|---|----------------------------|--|--|--| | g Series T≅o | Delta Component
(MBtu) (KBtu) | Ceiling (/sf) R-0 -3.02 1.71 R-11 -3.51 .91 R-13 -3.94 .19 R-22 -4.00 .09 R-38 -4.1312 R-49 -4.05 .009 R-60 -4.00 .09 | Slope(DD) -99.59
Curve(DDS) 208.899
Slab (/ft) | R-0
R-5 2ft -1.75 -3.30
R-5 4ft -1.75 -3.30
R-10 2ft -1.75 -3.30
R-10 4ft -1.75 -3.30
R-10 4ft -1.72 -2.47
Intercept .000
Slope(DD) -1191.48
Curve(DDS) 100.802 | Unheated Basement (/sf) | R-0 .00 2.74 R-11 fir .80 4.08 R-19 fir .84 4.14 R-30 fir .87 4.19 Intercept 4.204 Slope(DD) 23.70 Curve(DDS) -60.152 | Infiltration (/sf flr)
ELF Ach
.0007(.68) .00 3.14
.0005(.47)77 2.50
.0003(.28) -1.78 1.65 | Slope/.001ELF 6.271
Curve/.001ELF -2.552
Base Load = Typical Load = Residual Load = | | MApartment Prototype Sidin
ating Load | Delta Component
(MBtu) (KBtu) | Wall (/sf) R-0 .00 .04 R-7 .01 .00 R-1101 .01 R-130101 R-190101 R-270101 R-340101 | Slope(DD) -8.78
Curve(DDS) 3.082
eated Basement (/ft) | -0 -0 -01 .00
-5 4ft -01 .00
-5 8ft -01 .00
-10 4ft
-01 .00
-10 8ft -01 .00
Intercept .000
Slope(DD) .000
Curve(DDS) .000 | rawl (/sf) | -0 .00 .02
-11 flr01 .00
-19 flr01 .00
-30 flr01 .00
-49 flr01 .00
Intercept .001
Slope(DD) -2.57
Curve(DDS) 1.083 | 1-Pane .00 .10
2-Pane .0101
3-Pane0101
R-100101 | Slope(DD) -4.18
Curve(DDS) .296
.25 MBtu
.02 MBtu | | Honolulu HI TMY . MAF | Delta Component
(MBtu) (KBtu) | Ceiling (/sf) R-0 .00 .34 R-1 .15 .09 R-1118 .05 R-1920 .01 R-3020 .00 R-4920 .00 R-6020 .00 | Slope(DD) -3.54
Curve(DDS) 10.334
Slab (/ft) He | R-001 .00 R-
R-5 2ft01 .00 R-
R-5 4ft01 .00 R-
R-10 2ft01 .00 R-
R-10 4ft01 .00 R-
Intercept .000
Slope(DD) .000
Curve(DDS)000 | Unheated Basement (/sf) Cr | R-0
R-11 flr01 .00 R-19 flr01 .00 R-18 flr01 .00 R-19 flr01 .00 R-10 R-10 flr01 .00 R-10 R-10 R-10 R-10 R-10 R-10 R-10 R- | Infiltration (/sf flr) Wi
ELF Ach
.0007(.52) .0000
.0005(.37)0101
.0003(.22)0101 | Slope/.001ELF042
Curve/.001ELF .052
Base Load =
Typical Load =
Residual Load = | | | Cooling Load | Delta Component
(MBtu) (KBtu) | 6.4 | -11 -2.83 1.4
-13 -3.23 1.6 | -19 -3.43 .8 | -34 -3.86 .5 | Slope(DD) 613.32
Curve(DDS) 22.176 | Heated Basement (/ft) | R-Ø -2.43 25.73
R-5 4ft -2.44 25.67
R-5 8ft -2.42 25.73
R-1Ø 4ft -2.42 25.79
R-1Ø 8ft -2.49 25.37
Intercept 24.704
Slope(DD) 81.07
Curve(DDS) -1.374 | Crawl (/sf) | R-11 fir .74 4.83 R-19 fir .74 4.83 R-30 fir .52 4.69 R-38 fir .44 4.64 R-49 fir .40 4.61 Intercept 4.386 Slope(DD) 385.13 Curve(DDS) -76.378 | Window U-value (/sf) 1-Pane .00 -3.96 2-Pane04 -4.18 3-Pane .22 -2.78 R-10 .52 -1.15 | Slope(DD) -519.79
Curve(DDS) 14.009 | 48.97 MBtu
26.96 MBtu
6.95 MBtu | |----------------------|--------------|----------------------------------|---|----------------------------------|----------------------------------|---|---|-----------------------|---|-------------------------|---|---|---|--| | ng Series Two | Č | Delta Component
(MBtu) (KBtu) | eiling (/sf
-0 .00 8.5
-7 -8.17 3.2 | -11 -9.48 2.3
-19 -10.65 1.6 | -22 -11.04 1.3
-30 -11.57 1.0 | 89
14
30 | Slope(DD) 1460.70
Curve(DDS) -3.716 | Slab (/ft) | R-0 -6.8059 R-5 2ft -6.95 -1.50 R-6 4ft -6.90 -1.20 R-10 2ft -7.00 -1.80 R-10 4ft -6.8696 Intercept .0000 Slope(DD) -449.29 Curve(DDS) 32.544 | Unheated Basement (/sf) | R-0
R-11 flr86 3.79
R-19 flr62 3.95
R-3Ø flr46 4.05
Intercept 4.287
Slope(DD) -297.79
Curve(DDS) .527 | Infiltration (/sf flr) ELF Ach .0007(.58) .00 3.99 .0005(.41) -1.58 2.96 .0003(.24) -3.30 1.85 | Slope/.001ELF 6.494
Curve/.001ELF -1.136 | Base Load = Typical Load = Residual Load = | | Story Prototype Sidi | ating Load | Delta Component
(MBtu) (KBtu) | 00
7 -4.7 | -11 -5.37 2.8
-13 -6.13 2.1 | -19 -6.50 1.8
-27 -7.06 1.3 | -34 -7.41 1.0 | Slope(DD) 1264.52
Curve(DDS) 27.966 | Heated Basement (/ft) | R-0
R-5 4ft -6.59 11.28
R-5 8ft -7.06 8.45
R-10 4ft -6.99 8.87
R-10 8ft -7.54 5.55
Intercept -1.000
Slope(DD) 595.79
Curve(DDS)531 | Crawl (/sf) | R-0
R-11 flr -6.71 1.14
R-19 flr -7.66 .52
R-30 flr -8.05 .27
R-38 flr -8.14 .21
R-49 flr -8.40 .04
Intercept430
Slope(DD) 815.59
Curve(DDS) 66.291 | Window U-value (/sf)
1-Pane .00 26.88
2-Pane -3.47 8.10
3-Pane -4.06 4.90
R-10 -4.76 1.12 | Slope(DD) 424.74
Curve(DDS) 22.480 | 38.79 MBtu
12.46 MBtu
1.16 MBtu | | | H | Delta Component
(MBtu) (KBtu) | , 66 9
8.93 3 | -11 -10.35 2.6
-19 -11.63 1.8 | -22 -12.08 1.5
-30 -12.69 1.1 | -38 -13.05 .9
-49 -13.34 .7
-60 -13.52 .6 | Slope(DD) 1693.93
Curve(DDS) -18.093 | Slab (/ft) | R-0 -6.18 13.75
R-5 2ft -7.38 6.52
R-5 4ft -7.73 4.41
R-10 2ft -7.73 4.41
R-10 4ft -8.10 2.18
Intercept .000
Slope(DD) 676.79
Curve(DDS) 35.529 | Unheated Basement (/sf) | R-0
R-11 flr -7.39 .70
R-19 flr -7.99 .31
R-30 flr -8.37 .06
Intercept581
Slope(DD) 856.10
Curve(DDS) -52.939 | Infiltration (/sf flr) ELF Ach .0007(.66) .00 3.52 .0005(.45) -1.95 2.26 .0003(.29) -3.58 1.20 | Slope/.001ELF 3.214
Curve/.001ELF 2.598 | Base Load = Typical Load = Residual Load = | | ng Load | Delta Component
(MBtu) (KBtu) | Wall (/sf) R-0 .000 3.00 R-7900 1.11 R-11 -1.03 .84 R-13 -1.12 .65 R-19 -1.17 .65 R-27 -1.26 R-34 -1.31 .25 | Slope(DD) 301.93
Curve(DDS) 47.675
ated Basement (/ft) | 6 4ft63 42.25
5 8ft63 42.25
10 4ft64 42.00
10 8ft64 42.00
Intercept 41.607
Slope(DD) -24.77
Curve(DDS) .581 | awl (/sf) | -0 .00 3.87
-11 flr .62 4.90
-19 flr .60 4.87
-30 flr .49 4.65
-48 flr .47 4.65
-49 flr .40 4.53
Intercept .4.339
Slope(DD) .567.02
Curve(DDS) -128.557 | 1-Pane .00 -12.00
2-Pane .46 -8.80
3-Pane .90 -5.77
R-10 1.41 -2.20 | Slope(DD) -984.69
Curve(DDS) 20.086
33.62 MBtu
25.03 MBtu
13.27 MBtu | |-------------------------------------|----------------------------------|---|--|--|----------------------------|---|--|---| | Series Two
Coolin | Delta Component
(MBtu) (KBtu) | Ceiling (/sf) R-0 7.85 R-7 -2.97 2.90 R-11 -3.44 2.11 R-19 -3.87 1.40 R-30 -4.18 .88 R-36 -4.18 .88 R-49 -4.38 .56 R-60 -4.43 .70 | Slope(DD) 1247.82
Curve(DDS) 12.794
Slab (/ft) He | -0 -2.63 -5.25 R-
-5 2ft -2.56 -6.00 R-
-5 4ft -2.51 -4.75 R-
-10 2ft -2.53 -5.25 R-
-10 4ft -2.45 -3.25 R-
Intercept .000
Slope(DD) -1376.81
Curve(DDS) 77.020 | Unheated Basement (/sf) Cr | -066 2.77 R -11 flr .01 3.88 R -19 flr .11 4.05 R -30 flr .17 4.15 R Intercept 4.384 Slope(DD) -294.32 Curve(DDS) -4.113 | Infiltration (/sf flr) Wi
ELF Ach
0007(.57) .00 3.33
0005(.41) -1.13 2.39
0003(.25) -2.27 1.44 | Slope/.001ELF 4.833
Curve/.001ELF104
Base Load =
Typical Load =
Residual Load = | | d Town Prototype Siding
ing Load | Delta Component
(MBtu) (KBtu) | Wali
R-0
R-7
R-7
R-11
R-13
R-13
R-13
R-27
R-27
R-27
R-27
R-34
R-34
R-34
R-34
R-34
R-34
R-34
R-34 | Slope(DD) 665.57
Curve(DDS) 102.919
eated Basement (/ft) | -0 -2.19 17.79 R -5 4ft -2.68 5.54 R -5 8ft -2.76 3.54 R -10 4ft -2.74 4.04 R -10 8ft -2.82 2.04 R Intercept .037 Slope(DD) 85.31 Curve(DDS) 8.571 | rawi (/sf) | -0 | 1-Pane .00 22.18 . 2-Pane -2.23 6.69 . 3-Pane -2.61 4.04 . R-10 -3.06 .93 | Slope(DD) 351.44
Curve(DDS) 18.51Ø
16.85 MBtu
5.73 MBtu
3.11 MBtu | | Jacksonville FL TMY Mi.
Heat | Delta Component
(MBtu) | Ceiling (/sf) R-0 .00 .00 9.39 R-7 -3.65 3.31 R-11 -4.24 2.33 R-22 -4.90 1.22 R-38 -5.21 .71 R-49 -5.30 .57 R-60 -5.35 .48 | Slope(DD) 1255.72
Curve(DDS) 55.438
Slab (/ft) H | R-6 2ft -2.81 2.29 R
R-5 2ft -2.81 2.29 R
R-16 2ft -2.85 1.29 R
R-16 2ft -2.85 1.29 R
R-10 4ft -2.89 .29 R
Intercept .0000
Slope(DD) -39.88
Curve(DDS) 54.376 | Unheated Basement (/sf) C | R-Ø -2.19 1.19 R
R-11 flr -2.73 .29 R
R-19 flr -2.85 .09 R
R-3Ø flr -2.92Ø3 R
Intercept346
Slope(DD) 418.89
Curve(DDS) -23.437 | Infiltration (/sf flr) W
ELF Ach
.0007(.64) .00 1.98
.0005(.48) -1.33 .87
.0003(.29) -2.14 .20 | Slope/.001ELF959
Curve/.001ELF 5.417
Base Load =
Typical Load =
Residual Load = | | Cooling Load | ent Delta Component
8tu) (MBtu) (KBtu) | (sf) Wall (/sf) -87 R-0 .00 2.40 -88 R-760 .52 -88 R-1168 .25 -14 R-1375 .03 -73 R-277708 -89 R-277708 -89 R-3476 .00 | 525 Slope(DD) -139.48
525 Curve(DDS) 108.939
ft) Heated Basement (/ft) | .98 R-640 52.31
.98 R-5 4ft40 52.48
.48 R-5 8ft39 52.81
.98 R-10 4ft40 52.48
.14 R-10 8ft38 53.14
000 Intercept 54.442
Slope(DD) -143.59
883 Curve(DDS) 2.241 | sf) Crawl (/sf) | .62 R-0
.66 R-11 flr .83 4.67
.86 R-19 flr .81 4.63
.99 R-30 flr .85 4.71
R-38 flr .86 4.73
R-49 flr .90 4.79
314 Intercept 4.668
.57 Slope(DD) 100.59
Curve(DDS) -71.964 | flr) Window U-value (/sf) .45 | 781 Slope(DD) -1080.02
781 Curve(DDS) 23.703
oad = 31.35 MBtu
oad = 23.68 MBtu
oad = 11.85 MBtu | |--|---|---|--|--|-------------------------
---|---|---| | Siding Series Two | nt Delta Componel
u) (MBtu) (KBt | f) Ceiling (7) 29 R-0 .000 7 21 R-1 -3.10 2 R-11 -3.60 1 R-19 -4.04 1 R-22 -4.14 63 R-38 -4.39 R-47 R-50 -4.51 | 55 Slope(DD) 968
63 Curve(DDS) 60.
t) Slab (/ | 8 R-0 -1.83 4
8 R-5 2ft -1.85 3
8 R-10 2ft -1.85 3
8 R-10 2ft -1.85 3
8 R-10 4ft -1.91 2
8 Intercept 5!ope(DD) 989 | f) Unheated Basement (/ | R-040 2
R-11 flr .22 3
R-19 flr .34 3
R-30 flr .42 3
Intercept 4.
Slope(DD) -425
Curve(DDS) 18. | Infiltration (/sf
ELF Ach
.0007(.57) .00 3
9 .0005(.41) -1.09 2
2 .0003(.24) -2.25 1 | S Slope/.001ELF 5.
Curve/.001ELF
Base L
Typical L
Residual L | | MApartment Prototype S
Heating Load | Delta Component
(MBtu) (KBtu) | Wall
R-0
R-7
R-11
R-13
R-13
R-13
R-15
R-27
R-27
R-34
R-34
R-34
R-35
R-36
R-37
R-37
R-34
R-185
R-34 | Slope(DD) 479.5
Curve(DDS) 128.36
Heated Basement (/ft | R-6 | Crawl (/sf | R-0
R-11 flr -2.41 1.16
R-13 flr -2.71 .66
R-38 flr -2.83 .47
R-49 flr -2.95 .45
Intercept -2.93 .23
Slope(DD) 568.38
Curve(DDS) 87.976 | r) Window U-value (/sf
1-Pane .00 21.2
2-Pane -2.21 5.8
3-Pane -2.55 3.5
R-10 -2.95 .7 | Slope(DD) 257.4
Curve(DDS) 20.72
= 15.94 MBtu
= 5.20 MBtu
= 3.33 MBtu | | Jacksonville FL TMY | Delta Component
(MBtu) (KBtu) | Ceiling (/sf) R-0 .00 9.53 R-7 -3.77 3.25 R-11 -4.37 2.24 R-19 -4.91 1.34 R-22 -5.04 1.12 R-38 -5.22 .83 R-49 -5.32 .65 R-60 -5.46 .43 | Slope(DD) 1123.01
Curve(DDS) 81.603
Slab (/ft) | R-Ø -2.84 8.76 R-5 2ft -3.03 2.60 R-5 4ft -3.07 1.10 R-10 2ft -3.07 1.10 R-10 4ft -3.10 .26 Intercept .260 Slope(DD) -115.81 Curve(DDS) 67.062 | Unheated Basement (/sf) | R-0
R-11 flr -3.01 .15
R-19 flr -3.11 .00
R-30 flr -3.1610
Intercept342
Slope(DD) 326.97
Curve(DDS) -16.984 | Infiltration (/sf flr
ELF Ach
.0007(.64) .00 1.86
.0005(.48) -1.32 .76
.0003(.29) -2.09 .12 | Slope/001ELF -1.313
Curve/.001ELF 5.677
Base Load
Typical Load
Residual Load | | | | component
(KBtu) | (/sf)
.000
.000
.000
.000 | .00
.000
(/ft) | 19
19
19
13
13
14 . 46 | (/sf) | 01
01
01
01
01
02
02
02
03
03
03 | (/sf)
.00
.00
.00 | 88 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 | |----------------------------|--------------|----------------------------------|--|--|---|-------------------------|--|---|--| | | Cooling Load | Delta Comp
(MBtu) | Wall
R-0
R-7
R-11 .000
R-13 .000
R-13 .000
R-27 .000 | Slope(DD)
Curve(DDS)
Heated Basement | R-0
R-5 4ft01
R-5 8ft01
R-10 4ft01
R-10 8ft .00
Intercept Slope(DD) .curve(DDS) | Crawl | R-8
R-11 fir .01
R-19 fir .00
R-30 fir .00
R-38 fir .00
R-49 fir .00
Slope(DD) . | Window U-value
1-Pane .000
2-Pane .000
3-Pane .000
R-10 .000 | Slope (DD)
Curve (DDS)
.10 MBtu
.02 MBtu | | Series Two | Coo | Delta Component
(MBtu) (KBtu) | Ceiling (/sf) R-0 .000 .005 R-7005 .002 R-11006 .01 R-2207 .01 R-3007 .01 R-3807 .01 R-49008 .000 R-60008 .000 | Slope(DD) 6.60
Curve(DDS) .375
Slab (/ft) | R-0
R-5 2ft0225
R-5 4ft0225
R-10 2ft0225
R-10 4ft0119
Intercept01070
Slope(DD) -39.84
Curve(DDS) 1.684 | Unheated Basement (/sf) | R-0
R-11 fir .0001
R-19 fir .0001
R-30 fir .0001
Intercept014
Slope(DD) 1.06
Curve(DDS)432 | Infiltration (/sf flr) ELF Ach .0007(.58) .00 .00 .0005(.42) .00 .00 .0003(.25) .00 .00 | Slope/.001ELF .000
Curve/.001ELF .000
Base Load =
Typical Load =
Residual Load = | | One Story Prototype Siding | Heating Load | Delta Component
(MBtu) (KBtu) | Wali
R-0
R-7 -27.15 23.95
R-11 -31.02 20.51
R-13 -35.81 16.24
R-27 -42.64 10.16
R-34 -45.38 7.73 | Slope(DD) 1Ø168.56
Curve(DDS) -227.541
Heated Basement (/ft) | R-Ø -14.5Ø 175.83
R-6 4ft -23.04 124.38
R-5 8ft -26.81 101.67
R-1Ø 4ft -25.39 110.23
R-1Ø 8ft -31.15 75.53
Intercept .000
Slope(DD) 7627.98
Curve(DDS) -81.964 | Crawl (/sf) | R-0
R-11 flr -42.28 .91
R-19 flr -49.68 -3.89
R-30 flr -54.40 -6.96
R-38 flr -55.48 -7.66
R-49 flr -55.49 -9.68
R-49 flr -56.69 -9.68
Curve(DD) 9545.62 | Window U-
1-Pane
2-Pane
3-Pane
R-10 | Slope(DD) 10273.97
Curve(DDS) -64.083
= 255.36 MBtu
= 93.35 MBtu
= 9.92 MBtu | | Juneau AK TMY | e H | Delta Component
(MBtu) (KBtu) | Ceiling (/sf) R-0 .00 49.32 R-7 -45.32 19.89 R-11 -52.56 15.19 R-19 -59.06 10.97 R-22 -61.63 9.30 R-38 -67.14 5.72 R-49 -69.03 4.49 R-60 -70.25 3.70 | Slope(DD) 10298.72
Curve(DDS) -334.001
Slab (/ft) | -23.37 122.
4ft -33.15 63.
4ft -36.61 42.
4ft -34.90 52.
4ft -39.60 24.
ntercept -33.6
lope(DD) 16956.
urve(DDS) -338.6 | Unheated Basement (/sf) | R-0 -14.50 18.95 R-11 flr -40.28 2.21 R-19 flr -47.37 -2.39 R-30 flr -51.92 -5.35 Intercept -13.278 Slope(DD) 10770.33 Curve(DDS) -874.605 | tration (/s
Ach
(.77) .00 2
(.56)-12.46 2
(.33)-24.88 1 | Slope/.001ELF 40.064
Curve/.001ELF .325
Base Load :
Typical Load :
Residual Load : | | | | Component
(KBtu) | () s /)
00.
00.
00.
00.
00.
00. | .00
.000
(/ft) | 00000000000000000000000000000000000000 | (/sf) | .000
.033
.033
.033
.033
.031
5.13 | (/sf)
10
10
08 | .307 | |------------|------------|-----------------------|---|--------------------------------|--|----------|--|---
--| | | þe | Delta Co
(MBtu) | 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 | e(DD)
e(DDS)
asement | .000
.000
.000
.000
.000
.000
.000
.00 | | .002
.02
.02
.02
.02
.02
.02
.02
e(DD) | | (DD)
(DDS)
Btu
Btu
Btu | | | ooling Loa | | X X X X X X X X X X X X X X X X X X X | Slope
Curve
Heated Bas | R-6
R-5 4ft
R-5 8ft
R-10 4ft
R-10 8ft
Interc
Slope | Crawl | R-0
R-11 flr
R-19 flr
R-3Ø flr
R-49 flr
Slope
Curve | Window U-
1-Pane
2-Pane
3-Pane
R-10 | OLODO | | | Coc | omponent
(KBtu) | (,s,
. 693
. 693
. 622
. 622
. 621 | 19.76
912
(/ft) | . 66
. 25
. 25
. 25
. 25
. 896
. 898
. 263 . 99 | (/st) | 9999 999 | . 66
. 68
. 68 | . 0000
. 0000
. Load =
Load =
Load = | | о ж | | elta Cα
(MBtυ) | 00 | (\$00)
(00) | .00
.00
.01
.00
.00
.00
.00
.00
.00 | Basement | .000
.000
.000
.000
.000) | tion (/
 | SIELF
Base
Typical
Residual | | Series | | ٥ | C C C C C C C C C C C C C C C C C C C | Slope
Curve
Slab | R-6 2ft
R-5 2ft
R-5 4ft
R-10 2ft
R-10 4ft
Inter-
Slope
Curve | Jnheated | | Infiltrat
ELF Ach
0007(.58)
0005(.42)
0003(.25) | Slope/.0016
Curve/.0016 | | Siding | | ent
tu) | ;f)
78
26
07
00
36
13 | 22
36
t) | 940
900
900
900
900
10 | f) (| 7 | f)
38
72
30 | 98
92
92 | | rototype | | mpon
(KB | (/s
81 22.
49 19.
48 15.
20 9. | 9219.
-69.8
t (/f | .55 213.
.61 136.
.68 110.
.35 118.
.87 80.
.0
.7872.
) -66.5 | s/) | .00 30.
53 4.
.18
.86 -2.
.24 -3.
.34 -5.
.9627. | (/s
60 206.
68 94.
67 60.9 | 8244. | | ۵. | b e | Delta Co
(MBtu) | - 11
- 11
- 13
- 15
- 16
- 16
- 19
- 19
- 19 | ope(DD)
rve(DDS)
Basemen | t -12
t -13
t -13
t -14
ercept
pe(DD) | | r -15.
 r -18.
 r -20.
 r -20.
 r -21.
 r -21.
 r -21. | U-value
ne -16. | MBtu
MBtu
MBtu
MBtu
MBtu | | Mid Town | ating Lo | | × × × × × × × × × × × × × × × × × × × | Slo
Cur
Heated | | Craw. | R-0
R-11 f-
R-19 f-
R-30 f-
P-30 f-
Inf-
S-
C- | Window
1 1 − Pa
3 − Pa
R − 10 | Slor
Curi
123.53
40.75
1.44 | | ΤΜΥ | Ŧ | Component
(KBtu) | (/sf)
15.48
16.91
16.91
16.91
16.91
17.48
17.48
17.48
17.48
17.48
17.48
17.48
17.48
17.48
17.48
17.48
17.48
17.48
17.48
17.48
17.48
17.48
17.48
17.48
17.48
17.48
17.48
17.48
17.48
17.48
17.48
17.48
17.48
17.48
17.48
17.48
17.48
17.48
17.48
17.48
17.48
17.48
17.48
17.48
17.48
17.48
17.48
17.48
17.48
17.48
17.48
17.48
17.48
17.48
17.48
17.48
17.48
17.48
17.48
17.48
17.48
17.48
17.48
17.48
17.48
17.48
17.48
17.48
17.48
17.48
17.48
17.48
17.48
17.48
17.48
17.48
17.48
17.48
17.48
17.48
17.48
17.48
17.48
17.48
17.48
17.48
17.48
17.48
17.48
17.48
17.48
17.48
17.48
17.48
17.48
17.48
17.48
17.48
17.48
17.48
17.48
17.48
17.48
17.48
17.48
17.48
17.48
17.48
17.48
17.48
17.48
17.48
17.48
17.48
17.48
17.48
17.48
17.48
17.48
17.48
17.48
17.48
17.48
17.48
17.48
17.48
17.48
17.48
17.48
17.48
17.48
17.48
17.48
17.48
17.48
17.48
17.48
17.48
17.48
17.48
17.48
17.48
17.48
17.48
17.48
17.48
17.48
17.48
17.48
17.48
17.48
17.48
17.48
17.48
17.48
17.48
17.48
17.48
17.48
17.48
17.48
17.48
17.48
17.48
17.48
17.48
17.48
17.48
17.48
17.48
17.48
17.48
17.48
17.48
17.48
17.48
17.48
17.48
17.48
17.48
17.48
17.48
17.48
17.48
17.48
17.48
17.48
17.48
17.48
17.48
17.48
17.48
17.48
17.48
17.48
17.48
17.48
17.48
17.48
17.48
17.48
17.48
17.48
17.48
17.48
17.48
17.48
17.48
17.48
17.48
17.48
17.48
17.48
17.48
17.48
17.48
17.48
17.48
17.48
17.48
17.48
17.48
17.48
17.48
17.48
17.48
17.48
17.48
17.48
17.48
17.48
17.48
17.48
17.48
17.48
17.48
17.48
17.48
17.48
17.48
17.48
17.48
17.48
17.48
17.48
17.48
17.48
17.48
17.48
17.48
17.48
17.48
17.48
17.48
17.48
17.48
17.48
17.48
17.48
17.48
17.48
17.48
17.48
17.48
17.48
17.48
17.48
17.48
17.48
17.48
17.48
17.48
17.48
17.48
17.48
17.48
17.48
17.48
17.48
17.48
17.48
17.48
17.48
17.48
17.48
17.48
17.48
17.48
17.48
17.48
17.48
17.48
17.48
17.48
17.48
17.48
17.48
17.48
17.48
17.48
17.48
17.48
17.48
17.48
17.48
17.48
17.48
17.48
17.48
17.48
17.48
17.48
17.48
17.48
17.48
17.48
17.48
17.48
17.48
17.48
17.48
17.48
17.48
17.48
17.48
17.48
17.48
17.48
17.48
17.48
17.48
17.48
17.48
17.48
17.48
17.48
17.48
17.48
17.48
17.48 | 1.526
(/ft) | 0.440
0.440
0.440
0.440
0.440
0.440 | (/sf) | 14.23
3.93
.53
-1.66
7.696
92.19 | sf flr)
25.90
17.96
10.45 | 3.208
5.417
Load = Load = Load = Load = | | - | | elta Comp
(MBtu) (| | (DD) 100
(DDS) -21 | 12.62
15.89
15.91
15.91
16.58
16.58
0) 158
0) 158 | sement | 55
73
77
88
-78 | | ELF
ELF
Base
Typical | | aau AK | | De. (| Ceinng
RR-6ing
RR-111 - ing
RR-122 - I
RR-388 - I
RR-498 - I | Slope(D
Curve(D
Slab | 2ft
2ft
2ft
2ft
2ft
Cure | ated Ba | fir -15, fir -17, fir -19, fir -19, Slope(DD) | iltrati
Ach
7(.78)
56(.57)
3(.35)- | 9/.001
9/.001
R | | Junea | | | | | Ø 10 10 10 10 10 10 10 10 10 10 10 10 10 | Unhe | R-6
R-11
R-19
R-30 | Infi
ELF
.0007
.0005 | Curve | | | Component
(KBtu) | (s f)
(s 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 | 20.54
-2.854
(/ft) | 000000000000000000000000000000000000000 | (/sf) | . 60
. 61
. 60
60
60
60
60
60
60
60
60
60
60
60
60
60
60
60
60
60
60
60
60
60
60
60
60
60
60
60
60
60
60
60
60
60
60
60
60
60
60
60
60
60
60
60
60
60
60
60
60
60
60
60
60
60
60
60
60
60
60
60
60
60
60
60
60
60
60
60
. 60 | .13
.089
.086 | 10.32
208 | |--------------|----------------------------------|--|---|--|-------------------|--|---
--| | Cooling Load | Delta Cor
(MBtu) | Wall
R-0
R-7
R-11 .000
R-13 .00
R-19 .00
R-2700 | Slope(DD)
Curve(DDS)
Heated Basement | R-0 .00
R-5 4ft .00
R-5 8ft .00
R-10 4ft .00
R-10 8ft .00
Slope(DD)
Curve(DDS) | Crawl | R-0
R-11 flr .000
R-19 flr .000
R-30 flr .000
R-38 flr000
R-49 flr000
Slope(DD)
Curve(DDS) | Window U-
1-Pane
2-Pane
3-Pane
R-10 | Slope(DD)
Curve(DDS)
.08 MBtu
.02 MBtu | | J | mponent
(KBtu) | (/sf)
. 68
. 68
. 61
. 61
. 61
. 61 | 11.51
.341
(/ft) | w | (/st) | 00
00
00
00
011
16.24
-2.745 | (/sf flr)
02
01 | 063
.052
- Coad = Load Loa | | | Delta Con
(MBtu) | Ceiling
R-6
R-7
R-11 | Slope(DD)
Curve(DDS)
Slab | R-0
R-5 2ft .00
R-5 4ft .00
R-10 2ft .00
R-10 4ft .00
Intercept Slope(DD)
Curve(DDS) | Unheated Basement | R-0
R-11 flr .01
R-19 flr .00
R-30 flr .00
Intercept Slope(DD)
Curve(DDS) | Infiltration (ELF Ach .0007 (58) .000 (6005 (58) .000 .000 (58) .000 (58) .000 (58) .000 (58) .000 (58) | Slope/.001ELF
Curve/.001ELF
Bas
Typica
Residua | | leating Load | Delta Component
(MBtu) (KBtu) | Wall R-0 R-0 R-7 R-11 -9.21 R-13 R-13 R-13 R-13 R-14 R-19 R-17 R-27 R-27 R-27 R-27 R-34 R-34 R-34 R-34 R-34 R-36 R-36 R-36 R-37 R-37 R-37 R-37 R-37 R-37 R-37 R-37 | Slope(DD) 8968.45
Curve(DDS) -6.980
Heated Basement (/ft) | -0 -11.93 249.
-5 4ft -14.76 154.
-5 8ft -15.69 123.
-10 4ft -15.42 132.
-10 8ft -16.71 89.
Intercept .0
Slope(DD) 8705.
Curve(DDS) -66.1 | Crawl (/sf) | R-0
R-11 fir -15.97 5.72
R-19 fir -18.63 1.28
R-30 fir -20.31 -1.52
R-49 fir -20.89 -2.15
R-49 fir -21.80 -3.99
Intercept -8.174
Slope(DD) 8553.98
Curve(DDS) -127.477 | Window U-
1-Pane
2-Pane
3-Pane
R-10 | Slope(DD) 7976.22
Curve(DDS) -5.533
= 116.30 MBtu
= 36.97 MBtu | | Ť | Delta Component
(MBtu) (KBtu) | .00 51.18
18.80 19.85
21.80 14.85
25.49 10.36
25.75 6.59
27.53 5.29
28.19 4.19 | (DD) 9531.35
(DDS) -151.495
(/ft) | 16.29 176.4
16.98 164.1
16.98 86.9
16.63 92.6
17.56 61.4
D) 1829.8
DS) -339.01 | asement (/sf) | fir -16.92 4.15
fir -18.67 1.21
fir -19.8167
Intercept -5.930
Slope(DD) 7247.64
Curve(DDS) -714.192 | ion (/sf flr)
.00 25.67
-9.50 17.75
-18.44 10.30 | 001ELF 32.583 001ELF 5.834 Base Load = Typical Load = Residual Load = | | | | c) t | £256 | - 0 4 2
2 0 4 1 | 81 | 41
59 | () | 8 3 3 6 5 7 4 8 8 8 8 8 8 9 9 9 9 9 9 9 9 9 9 9 9 9 | if) | 88 5 4 4 8 8 5 9 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 | C 8884 | ოთ | | |----------|---------|-----------------------|-----------------------|----------------------------|----------------------|--------------------|----------------|---|---------|--|---|---------------------|----------------------------| | | • | ompone
(KBt | 8 2 0
2 4 5 0 | 2.7.6 | | 1065.
-36.9 | *> | 6 17.6
9.3
9.3
4 8.1
6.9
6.9
4 93.4
1.27
1.27 | (/s/ |
50.00
50.00
50.00
50.00
50.00
50.00
50.00
50.00
50.00
50.00
50.00
50.00
50.00
50.00
50.00
50.00
50.00
50.00
50.00
50.00
50.00
50.00
50.00
50.00
50.00
50.00
50.00
50.00
50.00
50.00
50.00
50.00
50.00
50.00
50.00
50.00
50.00
50.00
50.00
50.00
50.00
50.00
50.00
50.00
50.00
50.00
50.00
50.00
50.00
50.00
50.00
50.00
50.00
50.00
50.00
50.00
50.00
50.00
50.00
50.00
50.00
50.00
50.00
50.00
50.00
50.00
50.00
50.00
50.00
50.00
50.00
50.00
50.00
50.00
50.00
50.00
50.00
50.00
50.00
50.00
50.00
50.00
50.00
50.00
50.00
50.00
50.00
50.00
50.00
50.00
50.00
50.00
50.00
50.00
50.00
50.00
50.00
50.00
50.00
50.00
50.00
50.00
50.00
50.00
50.00
50.00
50.00
50.00
50.00
50.00
50.00
50.00
50.00
50.00
50.00
50.00
50.00
50.00
50.00
50.00
50.00
50.00
50.00
50.00
50.00
50.00
50.00
50.00
50.00
50.00
50.00
50.00
50.00
50.00
50.00
50.00
50.00
50.00
50.00
50.00
50.00
50.00
50.00
50.00
50.00
50.00
50.00
50.00
50.00
50.00
50.00
50.00
50.00
50.00
50.00
50.00
50.00
50.00
50.00
50.00
50.00
50.00
50.00
50.00
50.00
50.00
50.00
50.00
50.00
50.00
50.00
50.00
50.00
50.00
50.00
50.00
50.00
50.00
50.00
50.00
50.00
50.00
50.00
50.00
50.00
50.00
50.00
50.00
50.00
50.00
50.00
50.00
50.00
50.00
50.00
50.00
50.00
50.00
50.00
50.00
50.00
50.00
50.00
50.00
50.00
50.00
50.00
50.00
50.00
50.00
50.00
50.00
50.00
50.00
50.00
50.00
50.00
50.00
50.00
50.00
50.00
50.00
50.00
50.00
50.00
50.00
50.00
50.00
50.00
50.00
50.00
50.00
50.00
50.00
50.00
50.00
50.00
50.00
50.00
50.00
50.00
50.00
50.00
50.00
50.00
50.00
50.00
50.00
50.00
50.00
50.00
50.00
50.00
50.00
50.00
50.00
50.00
50.00
50.00
50.00
50.00
50.00
50.00
50.00
50.00
50.00
50.00
50.00
50.00
50.00
50.00
50.00
50.00
50.00
50.00
50.00
50.00
50.00
50.00
50.00
50.00
50.00
50.00
50.00
50.00
50.00
50.00
50.00
50.00
50.00
50.00
50.00
50 | (/s
7.
3. | 352.3
-2.54 | | | | | elta C
(MBtu) | 9.00 | 1 H H | . 4.
 | (00)
(008) | sement | -6.94
(00) | | .00
.95
.95
.94
.1.05
.1.07
.1.14
.00) | . 69
69
94
- 1.24 | (SQQ) | t t
u u | | | g Load | ۵ | ₩a R-6 | R-13
R-13
R-27 | 9 | Slope | ted Ba | Aft
Bft
Aft
Maft
Inter
Slope | = | ###################################### | o ≰
Pane
Pane
10 | Slope (
Curve (| . 64 MB | | | Cooling | | | | | | Hea | 88888
81-8
81-8
811-8 | Cras | 7. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. | ()
¥
10
10
10
10
10
10
10
10
10
10
10
10
10 | | 135 | | | | ponent
(KBtu) | (/sf)
8.21
3.32 | രയം | 0 ~ 0 | 732.35 | (/ft) | -1.65
-2.92
-2.80
-3.22
-1.950
394.88 | (/sf) | 1.91
3.89
4.46
4.82
5.802
334.50 | sf fl
2.40
1.70
1.01 | 3.312 | Load
Load | | Two | | lta Compo
MBtu) (A | 6.7-6 | 1001 | 11.1 | 0) 1
0S) - | | -8.07
-8.28
-8.26
-8.33
-8.27
-8.27
(DD) | sement | .86
.93
.37 | . 00
. 00
-1.08
-2.14 | 133
14 | Base
Typical
esidual | | ries | | Delt.
(MB | | 123
382
1 | - 38
- 49
- 60 | lope (D
urve (D | lab | 2 4 2 4 2 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 | ted Ba | fir
fir
fir
fir
force | ltration Ach (.60) (.43) (.26) | e/.0016
e/.0016 | _ œ_ | | g Se | | | 022 | : 0c 0c 0c | & & & | ωū | S | R-6
R-5
R-10
R-110
R-110
C C C C C C C C C C C C C C C C C C C | Unhea | R-0
R-11
R-19
R-30
R-30
C | Inf:
ELF.
.0007
.0005
.0003 | Slop | | | Siding | | ent
itu) | sf)
.89
.72 | n 4 ω | 0 | .20 | ft) | .78
.97
.21
.98
.98
.000
.31 | sf) | | sf)
.26
.00
.19 | 58 | | | otype | | mpom
(KB | 250 (| 200 P 10 | ω
4 | 5311
-92. | ¢ (| 8 2 4 6 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 | Š | 2 - 1 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - | (/
Ø 125
6 60
9 38
3 12 | 5388.
-24.3 | | | Prototy | ٦ | Delta Co
(MBtu) | . 4. 6 | -19.
-20.7 | 4. | e(DD)
e(DDS) | аѕетеп | -7.7
-12.2
-13.8
-13.3
-15.8
rcept
e(DD) | | .0
-21.8
-25.6
-27.9
-28.5
-38.0
rcept
e(DD) | .value
 | (60)
(608) | MBtu
MBtu
MBtu | | Story | ng Loa | _ | Wa R-0 | R-13
R-27 | 6 | Slope | ated Ba | 65 Aft
55 Aft
10 Aft
10 Aft
Inter
Slope
Curve | —
* | 11
10
10
10
10
10
10
10
10
10
10
10
10
1 | ndow U-
1-Pane
2-Pane
3-Pane
R-10 | Slope | 2.03
2.98
6.32 | | 0ne | Heati | ~ t | ~4 @ ¢ | 1817 | ოოო | 6 ~ | Ŧ | 44100861 | 2 | 2112
61112
78777
167777 | 1.) ¥
33 ¥
9 | 8 61 | d = 13 | | WYEC | | omponent
(KBtu) | (/sf
27.7
11.0 | . Ø – Ø | 40 | 5632.1
160.72 | (/ft) | 38.7.
13.7.
6.5
9.1(
-21.89
6612.0 | t (/sf) | 8.9
-1.8
-3.3(
-7.30
-42.82 | (/sf f
13.7
9.7
5.7 | 19.05 | se Load | | .y M0 | | elta Co
(MBtu) | 9
-25.6
-29.7 | -33.44
-34.86
-36.76 | 37.9
38.9
39.5 | - (saa)
(aa) | | -15.06
-19.21
-20.41
-19.97
-21.64
copt
(DD)
(DDS) | аѕетел | -7.75
-20.71
-24.28
-26.58
-26.69
(00) | ion
.000
-6.17
-12.24 | JELF
JELF | Bas
Typics
Residua | | sas City | |)
0 | 0 ~ - | 1 1 1 | 64.0 | Slope(
Curve(| Slab | 2ft
4ft
2ft
2ft
Inter
Slope
Curve | ated B | fir
fir
fir
Slope
Curve | iltrat
Ach
17 (.76)
15 (.54)
13 (.33) | pe/.001
ve/.001 | | | Kans | | | | | | | | R-6
R-5
R-10
R-10 | Unhe | R-11
R-11
R-30 | Infilt
ELF
.0007(
.0005(| Slope | | | | oonent
(KBtu) | (,sf)
4.0f)
1.985
1.59
1.22
1.633
.755 | 736.25
3.120
(/ft) | 22.17
13.17
12.42
10.42
7.67
.000
795.14
-8.027 | 4 to to to to 54 to 50 t | (/sf)
2.62
02
08 | 82.35
6.882 | |------------------------|----------------------------------|---|---|--
--|---|---| | | n
D | Wall
R-0
R-7 -1.02
R-11 -1.17
R-13 -1.35
R-19 -1.44
R-27 -1.65 | Slope(DD)
Curve(DDS)
Heated Basement | R-0
R-5
Aft -2.01
R-5
8+16
R-10
R-10
R-10
R-10
R-10
R-10
R-10
R-10
R-10
R-10
R-10
R-10
R-10
R-10
R-10
R-10
R-10
R-10
R-10
R-10
R-10
R-10
R-10
R-10
R-10
R-10
R-10
R-10
R-10
R-10
R-10
R-10
R-10
R-10
R-10
R-10
R-10
R-10
R-10
R-10
R-10
R-10
R-10
R-10
R-10
R-10
R-10
R-10
R-10
R-10
R-10
R-10
R-10
R-10
R-10
R-10
R-10
R-10
R-10
R-10
R-10
R-10
R-10
R-10
R-10
R-10
R-10
R-10
R-10
R-10
R-10
R-10
R-10
R-10
R-10
R-10
R-10
R-10
R-10
R-10
R-10
R-10
R-10
R-10
R-10
R-10
R-10
R-10
R-10
R-10
R-10
R-10
R-10
R-10
R-10
R-10
R-10
R-10
R-10
R-10
R-10
R-10
R-10
R-10
R-10
R-10
R-10
R-10
R-10
R-10
R-10
R-10
R-10
R-10
R-10
R-10
R-10
R-10
R-10
R-10
R-10
R-10
R-10
R-10
R-10
R-10
R-10
R-10
R-10
R-10
R-10
R-10
R-10
R-10
R-10
R-10
R-10
R-10
R-10
R-10
R-10
R-10
R-10
R-10
R-10
R-10
R-10
R-10
R-10
R-10
R-10
R-10
R-10
R-10
R-10
R-10
R-10
R-10
R-10
R-10
R-10
R-10
R-10
R-10
R-10
R-10
R-10
R-10
R-10
R-10
R-10
R-10
R-10
R-10
R-10
R-10
R-10
R-10
R-10
R-10
R-10
R-10
R-10
R-10
R-10
R-10
R-10
R-10
R-10
R-10
R-10
R-10
R-10
R-10
R-10
R-10
R-10
R-10
R-10
R-10
R-10
R-10
R-10
R-10
R-10
R-10
R-10
R-10
R-10
R-10
R-10
R-10
R-10
R-10
R-10
R-10
R-10
R-10
R-10
R-10
R-10
R-10
R-10
R-10
R-10
R-10
R-10
R-10
R-10
R-10
R-10
R-10
R-10
R-10
R-10
R-10
R-10
R-10
R-10
R-10
R-10
R-10
R-10
R-10
R-10
R-10
R-10
R-10
R-10
R-10
R-10
R-10
R-10
R-10
R-10
R-10
R-10
R-10
R-10
R-10
R-10
R-10
R-10
R-10
R-10
R-10
R-10
R-10
R-10
R-10
R-10
R-10
R-10
R-10
R-10
R-10
R-10
R-10
R-10
R-10
R-10
R-10
R-10
R-10
R-10
R-10
R-10
R-10
R-10
R-10
R-10
R-10
R-10
R-10
R-10
R-10
R-10
R-10
R-10
R-10
R-10
R-10
R-10
R-10
R-10
R-10
R-10
R-10
R-10
R-10
R-10
R-10
R-10
R-10
R-10
R-10
R-10
R-10
R-10
R-10
R-10
R-10
R-10
R-10
R-10
R-10
R-10
R-10
R-10
R-10
R-10
R-10
R-10
R-10
R-10
R-10 | | Window U-value
1-Pane .00
2-Pane38
3-Pane39
R-1040 | Slope(DD)
Curve(DDS)
23.78 MBtu
14.55 MBtu
4.62 MBtu | | ng Series Two | Delta Component
(MBtu) (KBtu) | Ceiling (/sf) R-0 R-7 -2.91 R-13 R-11 -3.37 R-19 R-22 -3.94 1.33 R-30 -4.13 R-38 R-4.25 R-49 R-49 R-49 R-49 R-49 R-53 R-40 R-53 R-40 R-53 | Slope(DD) 1448.04
Curve(DDS) -19.686
Slab (/ft) H | R-Ø R-5 2ft -3.21 -7.83 R-5 4ft -3.20 -7.58 R-10 2ft -3.23 -8.33 R-10 4ft -3.23 -8.33 R-10 4ft -3.21 -7.83 Intercept -5.918 Slope(DD) -672.17 Curve(DDS) 44.530 Unheated Basement (/sf) | ## 1.0 1.48 | Infiltration (/sf flr) WELF Ach
.0007(.60) .00 2.05
.0005(.43)79 1.39
.0003(.25) -1.51 .79 | Slope/.001ELF 2.417
Curve/.001ELF .729
Base Load = Typical Load = Residual Load = | | id Town Prototype Sidi | | Wall
R-0
R-7
R-11
R-11
R-13
R-13
R-13
R-13
R-14
R-27
R-15
R-15
R-17
R-19
R-27
R-58
R-27
R-58
R-27
R-58
R-34
R-10:18
R-58 | Slope(DD) 4558.11
Curve(DDS) 14.248
Heated Basement (/ft) | R-0 -4.96 93.59 R-5 4ft -6.48 55.59 R-5 8ft -6.91 44.84 R-10 4ft -6.82 47.09 R-10 8ft -7.42 32.09 Intercept .000 Slope(DD) 3223.85 Curve(DDS) -22.081 | -0
-11 flr -7.88 1.3
-19 flr -9.208
-30 flr -10.00 -2.1
-38 flr -10.18 -2.4
-49 flr -10.18 -2.4
Intercept -5.38
Slope(DD) 4134.4 | Window U-value (/sf)
1-Pane .00 107.36
2-Pane -8.93 45.35
3-Pane -11.35 28.53
R-10 -14.20 8.75 | Slope(DD) 3687.04
Curve(DDS) 14.384
61.92 MBtu
17.57 MBtu
3.84 MBtu | | Kansas City MO WYEC M | Delta Component
(MBtu) (KBtu) | Ceiling (/sf) R-0 .000 28.80 R-7 -10.61 11.11 R-11 -12.31 8.28 R-19 -13.83 5.75 R-20 -14.37 4.85 R-30 -15.09 3.65 R-49 -15.82 2.33 R-60 -16.12 1.93 | Slope(DD) 5271.21
Curve(DDS) -69.852
Slab (/ft) | R-6 -7.38 33.09 R-5 2ft -8.37 8.34 R-6 4ft -8.61 2.34 R-10 2ft -8.53 4.34 R-10 4ft -8.85 -3.66 Intercept -18.790 Slope(DD) 4457.71 Curve(DDS) 13.717 | 1 flr -7.97 1.
9 flr -8.96
0 flr -9.60 -1.
Intercept -4.4
Slope(DD) 4033.
Curve(DDS) -380.8 | Infiltration (/sf flr)
ELF Ach
.0007(.78) .00 11.97
.0005(.54) -4.64 8.10
.0003(.32) -8.85 4.59 | Slope/.001ELF 13.958
Curve/.001ELF 4.479
Base Load =
Typical Load =
Residual Load = | | | | ٠, | ~808868 | <u> </u> | . ଜନ୍ଧ୍ୟ ଦେଉ ଜ୍ୟ ନ | | #5 | | - | | |--------------------------|-----------|---|---|---
---|-----------------------------|--|---|---|-------------------------| | | | onen
KBtu | (/sf)
4.10
1.98
1.68
1.32
1.15
1.15 | 814.87
-9.934
(/ft) | 0 0 4 W 4 Ø W O | (/sf) | 3.94
4.97
4.97
5.11
5.21
5.26
5.367
5.367
12.158 | 2.86
2.86
.53
.29 | -5.40
4.306 | | | | | (MBtu) (A | | S) | -1.81
-2.11
-2.14
-2.18
-2.23
(DD)
(DD) | | . 62
. 76
. 75
. 75
. 76
. 79
. 79 | | 68 | _ | | | Load | Ded
X | | ve (| 44ft
8ft
4ft
nterce
urve(D | | Ir
Ir
Ir
Ir
ope(DD) | C - < a | ope (DD)
rve (DD)
6 MBtu
7 MBtu | Ω
Σ
Σ | | | Cooling | | ≆ ἀ ἀ ἀ ἀ ἀ ἀ ἀ ά | Hosto | R-6
R-5
R-16
R-16
R-10
IT | Crawl | R8
R11
R13
R38
R38
F9
F101
SIC
Cur | Window
1-Ps
2-Ps
3-Ps
R-16 | SI
Cu
21.6 | • | | | တိ | ent
tu) | sf)
.46
.81
.67
.18
.18 | .56
.48
.20
085
ft) | | sf) | | f1r)
.97
.34 | 1 II II P P P P P P P P P P P P P P P P | 0 | | | | Componer
(KBt | 00 6 8 4 7 5 7
00 6 8 4 7 5 7 | 4
9
1265
-1. | 4 4 8 8 1 1 9 9 1 1 9 9 1 1 9 9 1 1 9 9 1 1 9 9 1 1 9 9 1 1 9 9 1 1 9 9 1 | ر
د | 1
8
8
3
7
3
7
3
7
1
3
1
1
1
1
1
1
8
1
1
1
1
1
1
1
1
1
1
1 | (/sf
0 1
5 1 | ass | תם –
ר | | Two | | (MBtu) | 19 - 2 - 6 - 2 - 6 - 2 - 6 - 6 - 6 - 6 - 6 | 4.4 ~ (S | -2.6
-2.6
-2.6
-2.6
(00)
(00) | Basemen | -1.8
7
3
3
1
(00)
(00) | tion
6
7
7 | MOTELF
MOTELF
Typi | -
0 | | er ies | | ۵ | R-6 :- 11
R-11
R-11
R-13
R-32
R-38 | | 2ft
4ft
2ft
1nter
Slope
Curve | ated | fir | Ach
(.60
(.43
(.26 | 9./e^ | | | о,
О | | | | | 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 | Unhe | R-11
R-11
88
99 | Inf:
ELF
.0007
.0005 | Cur | | | Siding | | ± 🤄 | ~8004r8r | 21
(+) | | | | | | | | | | nen
Btu | 70.10 L 0 4 8 | . 15 4 | | /sf) | 5.93
2.38
2.38
11.26
11.57
2.47
2.47
7.66 | /sf)
7.29
4.68
8.67
8.67 | 7.25 | | | otype | | nodmo
(KB | (/s
29 25.
29 11.
99 9.
92 6.
84 4. | 4420.
44.0 | 11 114.8
51 68.2
91 55.0
82 57.8
82 39.3
39.3
3959.5
-27.15 | 4 | 900 15.9
113 2.3
149
31 -1.2
50 -1.5
4257.6
-50.09 | (/sf
8 107.2
1 44.6
1 28.0
2 8.5 | 65.2 | | | : Prototype | | elta Compon
(MBtu) (KB | (/s)
(/s)
(/s)
(/s)
(/s)
(/s)
(/s)
(/s) | (DD) 4420.
(DDS) 44.0 | -6.11 114.8 -7.51 68.2 -7.91 68.2 -7.91 65.08 -7.82 67.8 -8.38 39.3 cept .000 (DD) 3959.5 (DDS) -27.15 | S to | .00 15.9
-8.13 2.3
-9.49 .1
-10.31 -1.2
-10.50 -1.5
-11.04 -2.4
cept -4.58
(DD) 4257.6
(DDS) -50.09 | value (/sf
.00 107.2
-9.01 44.6
-11.41 28.0
-14.22 8.5 | (0D) 3587.2
(DDS) 18.05
Btu
Btu | b
t | | rtment P | g Load | nodmo
(KB | .00 25.
4.29 11.
4.90 9.
5.58 7.
6.49 4. | Slope(DD) 4420.
Curve(DDS) 44.0 | 4ft -6.11 114.8
8ft -7.51 68.2
4ft -7.91 55.0
4ft -7.82 57.8
8ft -8.38 39.3
Intercept .00
Slope(DD) 3959.5
Curve(DDS) -27.15 | l (/sf | .00 15.9
9 flr -9.13 2.3
9 flr -10.31 -1.2
8 flr -10.50 -1.5
9 flr -11.04 -2.4
Intercept -4.58
Slope(DD) 4257.6
Curve(DDS) -50.09 | U-value (/sf
ane .00 107.2
ane -9.01 44.6
ane -11.41 28.0
0 -14.22 8.5 | Slope(DD) 3587.2
Curve(DDS) 18.05
.17 MBtu
.99 MBtu | .9/ MBt | | MApartment Prototype | ating Loa | elta Compon
(MBtu) (KB | 0 | lope(DD) 4420.
urve(DDS) 44.0 | 4ft -7.51 68.2
8ft -7.91 55.8
4ft -7.91 55.8
8ft -8.38 39.3
ntercept .00
lope(DD) 3959.5
urve(DDS) -27.15 | S to | .00 15.9
fir -8.13 2.3
fir -9.49 .1
fir -10.31 -1.2
fir -10.50 -1.5
fir -11.04 -2.4
ntercept -4.58
lope(DD) 4257.6
urve(DDS) -50.09 | Window U-value (/sf
1-Pane .00 107.2
2-Pane -9.01 44.6
3-Pane -11.41 28.0
R-10 -14.22 8.5 | lope(DD) 3587.2
urve(DDS) 18.05
17 MBtu
99 MBtu | 3.97 MBt | | C MApartment P | ng Loa | nent Delta Compon
Btu) (MBtu) (KB | 0 | 2.15
1.79
54.69 Slope(DD) 4420.
6.220 Curve(DDS) 44.06
(/ft) Heated Basement (/f | 47.23 R-Ø -6.11 114.8
21.06 R-5 4ft -7.51 68.2
14.06 R-5 8ft -7.91 55.0
16.73 R-10 4ft -7.82 57.8
7.06 R-10 8ft -8.38 39.3
2.030 Intercept .00
58.81 Slope(DD) 3959.5
2.566 Curve(DDS) -27.15 | rawi (/sf | 5.74 R-0 .000 15.9
1.58 R-11 flr -8.13 2.3
.07 R-19 flr -9.49 .1
90 R-30 flr -10.31 -1.2
R-3 flr -10.50 -1.5
R-49 flr -11.04 -2.4
3.609 Intercept -4.58
Slope(DD) 4257.6
73.799 Curve(DDS) -50.09 | sf flr) Window U-value (/sf
11.78 1-Pane .00 107.2
7.92 2-Pane -9.01 44.6
4.46 3-Pane -11.41 28.0
R-10 -14.22 8.5 | 3.395 Slope(DD) 3587.2
4.897 Curve(DDS) 18.05
Load = 58.17 MBtu | Load = 3.9/ MBt | | rtment P | ating Loa | a Component Delta Compon
tu) (KBtu) (MBtu) (KB | (/sf) Wall (/s
0.00 27.86 R-0 .000 25.
2.02 7.82 R-11 -4.29 11.
3.51 5.34 R-11 -4.90 9.
4.01 4.50 R-13 -5.58 7.
4.01 4.50 R-19 -5.92 6.
5.10 2.69 R-34 -6.84 3. | 5.43 2.15
5.64 1.79
5.64 1.79 Slope(DD) 4420.
5) -26.220 Curve(DDS) 44.00.
(/ft) Heated Basement (/f | 8.14 47.23 R-Ø -6.11 114.8
8.93 21.06 R-5 4ft -7.51 68.2
9.14 14.06 R-5 8ft -7.91 55.0
9.06 16.73 R-10 4ft -7.82 57.8
9.34
7.06 R-10 8ft -8.38 39.3
t -12.030 Intercept .00
5858.81 Slope(DD) 3959.5
5) -52.566 Curve(DDS) -27.15 | ement (/sf) Grawl (/sf | .11 5.74 R-0 .000 15.9 .61 1.58 R-11 flr -8.13 2.3 .51 .07 R-19 flr -9.49 .1 .1090 R-30 flr -10.31 -1.2 R-3 flr -10.50 -1.5 R-49 flr -11.04 -2.4 .3.609 Intercept -4.58 3740.86 Slope(DD) 4257.6 Curve(DDS) -50.09 | n (/sf flr) Window U-value (/sf
.00 11.78 1-Pane .00 107.2
4.63 7.92 2-Pane -9.01 44.6
8.78 4.46 3-Pane -11.41 28.0
R-10 -14.22 8.5 | F 13.395 Slope(DD) 3587.2
F 4.897 Curve(DDS) 18.05
Base Load = 58.17 MBtu
pical Load = 15.99 MBtu | dual Load = 3.97 MBt | | O WYEC MApartment P | ating Loa | Component Deita Compon
u) (KBtu) (KBtu) (KB | ling (/sf) Wall (/s
-10.37 10.58 R-0 .00 25.
1 -12.02 7.82 R-11 -4.29 11.
2 -13.51 5.34 R-13 -5.58 7.
2 -14.01 4.50 R-19 -5.92 6.
8 -15.10 2.69 R-34 -6.84 3. | 9 -15.43 2.15
0 -15.64 1.79
pe(DD) 4854.69 Slope(DD) 4420.
ve(DDS) -26.220 Curve(DDS) 44.00
b (/ft) Heated Basement (/f | -8.14 47.23 R-0 -6.11 114.8
-8.93 21.06 R-5 4ft -7.51 68.2
-9.14 14.06 R-5 8ft -7.91 55.0
-9.06 16.73 R-10 4ft -7.82 57.8
-9.34 7.06 R-10 8ft -8.38 39.3
Cept -12.030 Intercept .00
(DD) 5858.81 Slope(DD) 3959.5
(DDS) -52.566 Curve(DDS) -27.15 | d Basement (/sf) Grawl (/sf | -6.11 5.74 R-0 .00 15.9 -8.61 1.58 R-11 flr -8.13 2.3 -9.51 .07 R-19 flr -9.49 .1 -10.1090 R-30 flr -10.31 -1.2 R-38 flr -10.50 -1.5 R-49 flr -11.04 -2.4 (DD) 3740.86 Slope(DD) 4257.6 (DDS) -373.799 Curve(DDS) -50.09 | ation (/sf flr) Window U-value (/sf
h .00 11.78 1-Pane .00 107.2
4) -4.63 7.92 2-Pane -9.01 44.6
2) -8.78 4.46 3-Pane -11.41 28.0
R-10 -14.22 8.5 | .001ELF 13.395 Slope(DD) 3587.2
.001ELF 4.897 Curve(DDS) 18.05
Base Load = 58.17 MBtu
Typical Load = 15.99 MBtu | dual Load = 3.97 MBt | | ity MO WYEC MApartment P | ating Loa | eita Component Deita Compon
(MBtu) (KBtu) (KB | ing (/sf) Wall (/s
-10.37 10.58 R-0 .00 25.
-12.02 7.82 R-11 -4.29 11.
-13.51 5.34 R-13 -5.58 7.
-14.01 4.50 R-19 -5.92 6.
-14.01 2.69 R-34 -6.84 3. | -49 -15.43 2.15
-60 -15.64 1.79
lope(DD) 4854.69 Slope(DD) 4420.
urve(DDS) -26.220 Curve(DDS) 44.00
lab (/ft) Heated Basement (/f | 2ft -8.93 21.06 R-5 4ft -7.51 68.2
4ft -9.14 14.06 R-5 8ft -7.91 55.0
2ft -9.06 16.73 R-10 4ft -7.92 57.8
4ft -9.34 7.06 R-10 8ft -7.82 57.8
ntercept -12.030 Intercept .00
lope(DD) 5858.81 Slope(DD) 3959.5
urve(DDS) -52.566 Curve(DDS) -27.15 | Basement (/sf) Crawl (/sf | -6.11 5.74 R-0 .00 15.9 r -8.61 1.58 R-11 flr -8.13 2.3 r -9.51 .07 R-19 flr -9.49 .1 r -10.1090 R-30 flr -10.31 -1.2 R-36 flr -10.50 -1.5 R-49 flr -11.04 -2.458 pe(DD) 3740.86 Slope(DD) 4257.6 ve(DDS) -373.799 Curve(DDS) -50.09 | tion (/sf flr) Window U-value (/sf
) .00 11.78 1-Pane .00 107.2
) -4.63 7.92 2-Pane -9.01 44.6
) -8.78 4.46 3-Pane -11.41 28.0
R-10 -14.22 8.5 | ### Slope(DD) 3587.2
Slope(DD) 3587.2
Curve(DDS) 18.05
Base Load = 58.17 MBtu Typical Load = 15.99 MBtu | esidual Load = 3.97 MBt | | | omponent
(KBtu) | (/sf)
4.86
2.34 | 1.56
1.35
1.35
1.35 | 953.67
-9.237
(/ft) | 28.45
25.68
25.19
24.83
22.070
191.14 | (/sf) | 5.62
5.16
5.16
4.99
4.88
4.78
4.78
623.22
623.22 | (/sf)
1.52
.11
.04 | -29.Ø1
3.279 | |-------------------------|--------------------|-----------------------|--|--------------------------------|--|----------|--|---|--| | _ | elta (
(MBtu) | 9.80 | - 3.95
- 4.38
- 64
- 64 | e(DD)
e(DDS)
asement | -3.01
-3.47
-3.55
-3.51
-3.74
-3.74
-6(DD)
e(DDS) | | .000
.22
.22
04
22
26
38
rcept
e(DD)
e(DDS) | -value
-value
000
20 | e(DD)
e(DDS)
MBtu
MBtu
MBtu | | oling Load | ۵ | - 6 - 7 - | R-11
R-13
R-13
R-27
R-34 | Slope
Curve
Heated Ba | R-6
R-5
R-5
R-18
R-10
R-10
Inte | Crawi |
R-0
R-111
R-130
R-30
R-30
F-110
F-111
R-111
R-111
R-1111
R-1111
R-1111
R-1111
R-1111
R-1111
R-1111
R-1111
R-1111
R-1111
R-1111
R-1111
R-1111
R-1111
R-1111
R-1111
R-1111
R-1111
R-1111
R-1111
R-1111
R-1111
R-1111
R-1111
R-1111
R-1111
R-1111
R-1111
R-1111
R-1111
R-1111
R-1111
R-1111
R-1111
R-1111
R-1111
R-1111
R-1111
R-1111
R-1111
R-1111
R-1111
R-1111
R-1111
R-1111
R-1111
R-1111
R-1111
R-1111
R-1111
R-1111
R-1111
R-1111
R-1111
R-1111
R-1111
R-1111
R-1111
R-1111
R-1111
R-1111
R-1111
R-1111
R-1111
R-1111
R-1111
R-1111
R-1111
R-1111
R-1111
R-1111
R-1111
R-1111
R-1111
R-1111
R-1111
R-1111
R-1111
R-1111
R-1111
R-1111
R-1111
R-1111
R-1111
R-1111
R-1111
R-1111
R-1111
R-1111
R-1111
R-1111
R-1111
R-1111
R-1111
R-1111
R-1111
R-1111
R-1111
R-1111
R-1111
R-1111
R-1111
R-1111
R-1111
R-1111
R-1111
R-1111
R-1111
R-1111
R-1111
R-1111
R-1111
R-1111
R-1111
R-1111
R-1111
R-1111
R-1111
R-1111
R-1111
R-1111
R-1111
R-1111
R-1111
R-1111
R-1111
R-1111
R-1111
R-1111
R-1111
R-1111
R-1111
R-1111
R-1111
R-1111
R-1111
R-1111
R-1111
R-1111
R-1111
R-1111
R-1111
R-1111
R-1111
R-1111
R-1111
R-1111
R-1111
R-1111
R-1111
R-1111
R-1111
R-1111
R-1111
R-1111
R-1111
R-1111
R-1111
R-1111
R-1111
R-1111
R-1111
R-1111
R-1111
R-1111
R-1111
R-1111
R-1111
R-1111
R-1111
R-1111
R-1111
R-1111
R-1111
R-1111
R-1111
R-1111
R-1111
R-1111
R-1111
R-1111
R-1111
R-1111
R-1111
R-1111
R-1111
R-1111
R-1111
R-1111
R-1111
R-1111
R-1111
R-1111
R-1111
R-1111
R-1111
R-1111
R-1111
R-1111
R-1111
R-1111
R-1111
R-1111
R-1111
R-1111
R-1111
R-1111
R-1111
R-1111
R-1111
R-1111
R-1111
R-1111
R-1111
R-1111
R-1111
R-1111
R-1111
R-1111
R-1111
R-1111
R-1111
R-1111
R-1111
R-1111
R-1111
R-1111
R-1111
R-1111
R-1111
R-1111
R-1111
R-1111
R-1111
R-1111
R-1111
R-1111
R-1111
R-1111
R-1111
R-1111
R-1111
R-1111
R-1111
R-1111
R-1111
R-1111
R-1111
R-1111
R-1111
R-1111
R-1111
R-1111
R-1111
R-1111
R-1111
R-1111
R-1111
R-1111
R-1111
R-1111
R-1111
R-1111
R-1111
R-1111
R-1111
R-1111
R-1111
R-1111
R-1111
R-1111
R-1111
R-1111
R-1111
R-1111
R-1111
R-1111
R-1111
R-1111
R-1111
R-1111
R-1111
R-1111
R-1111
R-1111
R | Window U 1-Pan 2-Pan 3-Pan R-10 | Slop
Curv
53.31
= 28.46
= 6.28 | | Š | nponent
(KBtu) | £ 5. | 2.62
1.81
1.53
1.16
.93 | 1660.30
-18.809
(/ft) | -1.25
-3.26
-2.64
-3.24
-920.38 | t (/sf) | 3.07
4.01
4.13
4.21
4.377
-206.12 | (/sf flr)
5.10
3.78
2.35 | 8.247 -1.380 se Load al Load | | | elta Com
(MBtu) | | -10.10
-11.35
-11.78
-12.36
-12.71
-13.01 | • (DD) 1
• (DDS) . | -7.94
-8.23
-8.17
-8.17
-8.14
rcept
e(DD) | Ваѕешел | -3.01
-1.56
-1.37
-1.25
-1.25
e(DD)
e(DD) | ration
ch
48) .00
34) -2.03
22) -4.23 | .001ELF
.001ELF
. Typic
Residu | | | ۵ | - 6 | R-11
R-22
R-38
R-38
R-38
R-49 | Slab
Slab | R-6
R-5
R-5
R-5
R-10
R-10
Aft
S-10
Aft
Cure | Unheated | R-0
R-11 flr
R-19 flr
R-30 flr
Inter
Slope | Infiltr
ELF Ac.
.0007(.4
.0005(.3 | Slope/. | | | omponent
(KBtu) | . o | 3.37
2.59
1.60
1.23 | 552.06
13.261
(/ft) | 27.27
14.62
11.78
11.78
7.75
497
768.34 | (/sf) | 6.62
1.33
.56
.17
.08
18
803
1184.54 | (/sf)
34.85
12.99
8.06
2.27 | 93Ø.87
14.738 | | | elta (
(MBt∪) | 5.0 | -6.02
-6.90
-7.33
-8.01
-8.43 | e (DD) 1
e (DDS)
asement | -5.67
-7.77
-8.30
-8.24
-8.91
cept
e(DD) | | .00
-8.15
-9.33
-9.93
-10.67
-10.47
-10.47
-10.00
e(DD) | U-value000 .ne4.04 .ne -4.95 .ne -6.02 | e(DD)
e(DDS)
MBtu | | one scory
ating Load | ۵ | Wa-1
R-0
R-7 | R-11
R-13
R-19
R-27
R-34 | Slope
Curve
Heated Ba | R-6
R-5
R-5 8ft
R-10 8ft
R-10 8ft
R-10 Curv | Crawl | R-6
R-11 f-
R-19 f-r
R-38 f-r
R-9 f-r
S-00 f-r
Cury | Window 1-Pa 3-Pa R-12 | Slop
Curv
45.64 | | WIEC U | omponent
(KBtu) | 4,00 | 20.00
20.10
11.78
11.34
11.67
1.67 | .946.25
.35.618
(/ft) | ω ω ω ω ω ω ω ω ω ω | t (/sf) | 2.94
.84
.35
.03
.03
.1095.14 | _ | 4.870
2.598
se Load = | | N
V | elta C
(MBtυ) | و.
و.
و. | -11.20
-12.59
-13.10
-14.19
-14.52 | e(DD) 1
e(DDS) - | -7.48
-8.94
-9.28
-9.13
-9.16
-9.56
occept | Basemen | , 000 | ation
th
(6) .000
(1) -2.46
(1) -4.60 | .001ELF
.001ELF
Base
Typica | | ake Charle | ٥ | 40 1 1 | R-11
R-13
R-13
R-38
R-48
R-48 | lop
urv
de | 24
44
44
10
10
10 | Unheated | ່ ⊣ດຣ ີິິວ | Infiltra
ELF Act
0007(.70
0005(.50
0003(.30 | Slope/. | | Cooling Load | Delta Component
(MBtu) (KBtu) | Wall (/sf) R-Ø .000 4.12 R-7 -1.02 1.97 R-11 -1.17 1.67 R-13 -1.35 1.29 R-19 -1.44 1.10 R-27 -1.58 .80 R-34 -1.67 .62 | Slope(DD) 790.90
Curve(DDS) -4.474
Heated Basement (/ft) | R-Ø
R-5 4ft -1.17 40.68
R-5 8ft -1.17 40.68
R-10 4ft -1.19 40.18
R-10 8ft -1.19 40.18
Intercept 40.639
Slope(DD) -84.15
Curve(DDS) 4.216 | Crawl (/sf) | R-Ø R-11 fir .41 5.35 R-19 fir .36 5.26 R-30 fir .36 5.26 R-38 fir .36 5.26 R-49 fir .36 5.26 Slope(DD) 237.06 Curve(DDS) -63.195 | Window U-value (/sf) 1-Pane .00 -6.45 2-Pane .13 -5.55 3-Pane .40 -3.67 R-10 .72 -1.45 | Slope(DD) -654.88
Curve(DDS) 15.546
35.72 MBtu
25.85 MBtu
12.82 MBtu | |---------------------------------------|----------------------------------|--|---|--|-------------------------|--|---|---| | ing Series Two | Deita Component
(MBtu) (KBtu) | Ceiling (/sf) R-0 R-7 R-1 R-11 R-13 R-19 R-17 R-22 R-38 R-38 R-4 SB R-4 R-4 R-78 R-58 R-58 R-78 R-73 R-69 R-78 R-78 R-78 R-78 R-69 R-76 R-78 | Slope(DD) 1304.21
Curve(DDS) 19.491
Slab (/ft) | R-0
R-5 2ft -3.06 -5.07
R-5 4ft -3.02 -5.57
R-10 2ft -3.07 -6.82
R-10 4ft -2.99 -4.82
Intercept .000
Slope(DD) -1737.62
Curve(DDS) 110.972 | Unheated Basement (/sf) | R-0
R-11 fir45 3.91
R-19 fir33 4.10
R-30 fir26 4.23
Intercept 4.538
Slope(DD) -408.03
Curve(DDS) 19.005 | Infiltration (/sf flr) ELF Ach .0007(.51) .000 4.13 .0005(.37) -1.48 2.90 .0003(.22) -2.91 1.71 | Slope/.001ELF 5.542
Curve/.001ELF .521
Base Load = Typical Load = Residual Load = | | Mid Town Prototype Sid
eating Load | Delta Component
(MBtu) (KBtu) | Wall (/sf) R-0 R-7 -2.23 3.27 R-11 -2.55 2.60 R-13 -2.87 1.92 R-19 -3.03 1.59 R-27 -3.24 1.15 R-34 -3.37 .88 | Slope(DD) 1034.78
Curve(DDS) 82.453
Heated Basement (/ft) | R-Ø -2.66 24.56
R-5 4ft -3.22 10.56
R-5 8ft -3.33 7.81
R-10 4ft -3.31 8.31
R-10 8ft -3.44 5.06
Intercept -122
Slope(DD) 417.16
Curve(DDS) 4.684 | Crawl (/sf) | R-0
R-11 flr -2.78 1.44
R-19 flr -3.16 .80
R-30 flr -3.35 .49
R-38 flr -3.35 .49
R-49 flr -3.51 .22
Intercept -2.27
Slope(DD) 916.50
Curve(DDS) 62.697 | 1-Pane .00 28.40
2-Pane -2.74 9.37
3-Pane -3.26 5.73
R-10 -3.88 1.45 | Slope(DD) 572.59
Curve(DDS) 19.065
= 20.49 MBtu
= 7.52 MBtu | | Lake Charles LA WYEC | Delta Component
(MBtu) (KBtu) | Ceiling (/sf) R-0 .00 10.58 R-7 -4.04 3.84 R-11 -4.69 2.77 R-19 -5.27 1.80 R-22 -5.47 1.51 R-36 -5.68 1.12 R-49 -5.92 .88 R-49 -5.99 .60 | Slope(DD) 1583.70
Curve(DDS) 33.922
Slab (/ft) | R-0
R-5 2ft -3.19 11.31
R-5 4ft -3.53 2.81
R-10 2ft -3.51 3.31
R-10 4ft -3.57 1.81
Intercept .000
Slope(DD) 291.60
Curve(DDS) 56.640 | Unheated Basement (/sf) | R-0 -2.66 1.64
R-11 flr -3.33 .52
R-19 flr -3.50 .24
R-30 flr -3.61 .05
Intercept429
Slope(DD) 651.41
Curve(DDS) -48.470 | Infiltration (/sf flr)
ELF Ach
.0007(.71) .00 3.11
.0005(.51) -1.68 1.71
.0003(.30) -2.87 .72 | Slope/.001ELF .875
Curve/.001ELF 5.104
Base Load = Typical Load = Residual Load = | | | omponent
(KBtu) | (/sf)
4.04
4.04
1.87
1.20
1.20
1.20
1.51 | 717.66
6.301
(/ft) | 52.77
49.10
48.27
47.77
47.94
47.609
-12.87 | (/sf) | 3.93
4.86
4.75
4.60
4.50
4.52
4.254
574.16 | -3.54
-3.68
-2.45
-1.01 | -456.52
12.212 | |---|----------------------------------|---
---|--|---------------------------|---|--|---| | ing Load | Delta Con
(MBtu) | Wall
R-0
R-769
R-1178
R-1396
R-27 - 1.05
R-34 -1.10 | Slope(DD)
Curve(DDS)
leated Basement | -0 - 78
-5 4ft - 89
-10 4ft - 91
-10 4ft - 93
-10 8ft - 93
Slope(DD)
Curve(DDS) | - we - | -0
-11 flr .56
-19 flr .49
-30 flr .42
-49 flr .35
Intercept .35
Slope(DD)
Curve(DDS) - | /indow U-value . 1-Pane | Slope(DD)
Curve(DDS)
93.65 MBtu
24.81 MBtu
11.08 MBtu | | Series Two Cooli | Delta Component
(MBtu) (KBtu) | Ceiling (/sf) R-0 .00 8.57 R-1 -3.23 3.18 R-11 -3.75 2.32 R-19 -4.21 1.55 R-22 -4.36 1.30 R-30 -4.56 .97 R-30 -4.57 .77 R-49 -4.77 .62 | Slope(DD) 1388.55
Curve(DDS) 9.499
Slab (/ft) H | R-0
R-5
2ft -2.3606
R-5
4ft -2.3723
R-10 2ft -2.3723
R-10 4ft -2.3723
R10 e(DD) -133.00
Slope(DD) -133.00
Curve(DDS) 18.044 | Unheated Basement (/sf) C | R-0
R-11 flr20 3.60 R
R-19 flr11 3.74 R
R-30 flr06 3.84 R
Intercept 4.055
Slope(DD) -275.47
Curve(DDS)161 | Infiltration (/sf flr) W
ELF Ach
.0007(.48) .00 4.36
.0005(.37) -1.49 3.12
.0003(.22) -2.99 1.88 | Slope/.001ELF 6.271
Curve/.001ELF052
Base Load = Typical Load = Residual Load = | | MApartment Prototype Siding
Heating Load | Delta Component
(MBtu) (KBtu) | Wall (/sf) R-0 .00 7.65 R-7 -1.49 2.94 R-11 -1.70 2.27 R-13 -1.90 1.65 R-19 -2.00 1.34 R-27 -2.12 .96 R-34 -2.20 .73 | Slope(DD) 817.94
Curve(DDS) 112.456
Heated Basement (/ft) | R-0
R-5 4ft -3.63 6.66
R-5 8ft -3.73 3.49
R-10 8ft -3.77 2.16
R-10 8ft -3.77 2.16
Slope(DD) 2.027
Slope(DD) 13.858 | Crawl (/sf) | R-0
R-11 flr -2.98 1.41
R-19 flr -3.38 .74
R-3Ø flr -3.55 .47
R-49 flr -3.59 .41
R-49 flr -3.69 .41
R-49 flr -3.69 .23
R-49 flr -3.69 .23
R-40 flr -3.69 .23
Curve(DDS) 834.64 |) Window U-value (/sf)
1-Pane .00 27.33
2-Pane -2.76 8.17
3-Pane -3.23 4.93
R-10 -3.78 1.12 | Slope(DD) 420.61
Curve(DDS) 23.286
= 19.38 MBtu
= 6.86 MBtu | | Lake Charles LA WYEC
He | Delta Component
(MBtu) (KBtu) | Ceiling (/sf) R-0 .00 10.72 R-1 -4.15 3.81 R-11 -4.81 2.71 R-12 -5.67 1.72 R-22 -5.57 1.44 R-38 -5.93 .83 R-49 -6.03 .67 R-60 -6.09 .57 | Slope(DD) 1486.40
Curve(DDS) 54.392
Slab (/ft) | R-0 -3.50 10.99 R-5 2ft -3.72 3.49 R-5 4ft -3.77 1.99 R-10 2ft -3.75 2.49 R-10 4ft -3.60 1.16 Intercept .000 Slope(DD) 38.30 Curve(DDS) 75.868 | Unheated Basement (/sf) | R-0
R-11 flr -3.68 .25
R-19 flr -3.80 .04
R-30 flr -3.8809
Intercept437
Slope(DD) 462.14
Curve(DDS) -29.451 | Infiltration (/sf flr
ELF Ach
.0007(.71) .00 2.92
.0005(.50) -1.69 1.52
.0003(.30) -2.83 .57 | Siope/.001ELF .166
Curve/.001ELF 5.729
Base Load
Typical Load
Residual Load | | | ooling Load | Delta Component
(MBtu) (KBtu) | | `` | 2.6 03. 7-
7 -7 1 4 F | -11 -5.95 3.9 | -13 -6.90 3.0 | -19 -7.37 2.6 | -27 -8.19 1.9 | -34 -8.69 1.4 | | Slope(DD) 1925.31
Curve(DDS) -39.535 | Heated Basement (/ft) | | -6 -5.75 40.6 | T -7.36 30.9 | -10 4ft7 83 09 1 | -10 8ft -8.23 25.7 | Intercept
Slope (DD) | #s/) | | -00.
-11 () - 11 () - | -19 fir -3.87 5.6 | R-30 fir -4.46 5.22
R-38 fir -4.59 5.14 | -49 flr -4.98 4.8 | 4.28
1281.0 | urve(DDS) -104.05 | Window U-value (/sf) | 1 00 00 00 00 00 00 00 00 00 00 00 00 00 | -Pane - 7 15 11 1 | 2.89 | Slope(DD) 1Ø12.24
Curve(DDS) -5 701 | | 69.53 Mbtu
31.52 MBtu
2.66 MBtu | |-------------------------|--------------|----------------------------------|-------------|-------------|--------------------------|----------------|-------------------------------------|-----------------------------------|----------------------------------|------------------|----------------|---|-----------------------|----------------|--------------------|-----------------|---------------------|---------------------|-------------------------------|-------------------------|--------------|---|--|--|-------------------|--|-------------------|-----------------------------------|--|-------------------|---------------------------------------|--|-----------|--| | ding Series Two | · G | Delta Component
(MBtu) (KBtu) | | -6 15.5 | -7 -14.47 6.1 | -11 -16.78 4.6 | -19 -18.86 3.3 | -22 -19.64 2.8 | -38 -20.18 2.1
-38 -51 33 1 7 | R-49 -21:91 1:36 | -60 -22.28 1.1 | Slope(DD) 3118.09
Curve(DDS) -82.404 | Slab (/ft) | 5 | -5 2ft -11 50 c | ft -11.66 | -10 2ft -11.74 4 | -10 4ft -11.92 3 | Cept
(DD) 144
(DDS) -58 | ement (/ | -0 -5 75 4 2 | -11 flr -5.51 4.5 | R-19 flr -5.64 4.46 | -30.11 -5.12 4.4 | 40000 | Slope(DD) 268.87 | urve(DDS) -46.21 | = | Ach
(.69) .88 3.5 | 5(.49) | ØØ3(.29) -3.19 1.5 | Slope/.001ELF 4.935
Curve/.001ELF .244 | 7 - 7 | Dase Load = Typical Load = Residual Load = | | One Story Prototype Sic | Heating Load | Delta Component
(MBtu) (KBtu) | +=// | 9 | -7 -7.39 5.6 | -11 -8.44 4.7 | 13 19.76 3.5 | -19 -10.32 3.60
-77 -11.54 5.5 | -34 -11.80 1.7 | | | Slope(DD)
2146.02
Curve(DDS) 23.353 | Heated Basement (/ft) | -0 -7.51 46 1 | -5 4ft -10.69 26.9 | 8ft -11.34 23.0 | -10 4ft -11.46 22.3 | -10 8ft -12.22 17.7 | | Grawl (/sf) | 8.6 00. | -11 fir -11.74 2.2 | -19 flr -13.55 1.0
-30 flr -14.43 4 | R-38 flr -14.63 .35
R-40 flr 11 01 | Intercept -1.01 | oe (DD) 1834.4 | urve(UUS) 55.51 | Window U-value (/sf) | -Pane .00 48.3 | -Pane -5.75 17.2 | S-rane -6.9/ 10.64
R-10 -8.40 2.89 | Slope(DD) 1171.48
Curve(DDS) 24.996 | 64.86 MB | 21 2 | | Las Vegas NV WYEC | | Delta Component
(MBtu) (KBtu) | eiling (/sf | -6 .60 14.5 | -/ -13.61 5.7 | -11 -10./8 4.3 | - 10 - 11:14 5:0
-22 - 18 47 0 R | -30 -19.44 1.9 | -38 -20.03 1.5 | R-49 -20.52 1.23 | -00 -20.83 1.0 | -> | Slab (/ft) | -0 -12.05 18.7 | -5 2ft -13.89 7.6 | 4ft -14.19 5.8 | -10 ZTC -14.23 5.6 | 10 4 C - 14:55 3:7 | e(DD) 1001
e(DDS) 121. | Unheated Basement (/sf) | -0 -7.51 4.9 | -11 flr -12.58 1.6 | R-30 fir -14.69 .31 | | ntercept -1.10 | Slope(DD) 1910.40
Curve(DDS) -141 412 | ******* (222) | Infiltration (/sf flr)
ELF Ach | (.71) .00 6. | (.55) -3.42 4.6 | 7:7 75:0- (10:) | Siope/.001ELF 6.039
Curve/.001ELF 4.221 | Base Load | Typical Load =
Residual Load = | | | | component
(KBtu) | (/sf)
9.83
4.93
3.30 | ω <i>σ</i> ο σο | 2083.23
-47.461
(/ft) | 57.95
445.76
42.95
42.95
33.995
31.944
44.265 | (/sf) | 7.86
6.08
6.08
5.21
5.21
6.13
4.293
1264.10 | (/sf)
21.45
10.27
6.54
2.15 | 922.27
-4.155 | | |-------------|--------------|---------------------|---|--|-----------------------------|--|----------|---|---|----------------------|------------------------------| | | ٦ | Delta Cor
(MBtu) | . 60
-2.34
-2.67 | - 3 - 3 - 3 - 3 - 3 - 3 - 3 - 3 - 3 - 3 | e(DD)
e(DDS)
asement | -2.36
-2.85
-2.92
-2.98
-2.98
rcept
e(DD) | | .08
-1.93
-1.55
-1.68
-1.74
-1.74
-(DD) | -value .00 -1.61 -2.15 | (SQQ)
• (DDS) | MBtu
MBtu
MBtu | | | Cooling Load | _ | -07-11 | 1 1 1 | Slope
Curve | R-6
4ft
R-5 4ft
R-10 8ft
R-10 8ft
Slope
Curve | Crawl | R-6
R-11
R-10
R-10
R-30
FL
R-30
FL
R-49
FL
S-49
FL
Curve | Window U. 1-Pane 2-Pane 3-Pane R-10 | Slope | 42.49
26.28
8.25 | | | Coo | (KBtu) | £ 4 4 0 4 | 2.24
2.24
1.81
1.42
1.16 | 41.08
9.696
(/ft) | 5.45
3.20
2.95
2.45
1.95
47.97 | (/sf) (| 3.86
4.23
4.24
4.25
4.25
19.995 | 3.33
2.31
1.34 | 4.250 | Coad = Load = Load = | | 1 ₩0 | | (MBtu) (H | 9.00.7 | -8.68
-8.50
-9.00 | (00)
(008) -7 | -4.46
-4.55
-4.56
-4.60
(00)
(DD) | Basement | -2.36
-2.14
-2.13
-2.13
-2.13
-2.00) | tion (/
.000
) -1.23
) -2.39 | .001ELF
.001ELF | Base
Typical
Residua | | Series | | ۵ | 6 1 1 1 - 7 - 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | . R R R R R | Slope
Curve
Slab | -6 2ft
-15 2ft
-16 2ft
-10 2ft
-10 Aft
Slope
Curve | Unheated | -0
-11 fr
-19 fr
-30 fr
Inter
Slope
Curve | Infiltrat
ELF Ach
0007(.69)
0005(.49)
0003(.29) | Slope/.Ø
Curve/.Ø | | | ding | | | | | | 0-00-000
CCCCC | ٠
• | | | 7 9 | | | /pe Si | | omponent
(KBtu) | (/sf)
11.27
4.62
3.68 | - 0.00 | 1454.01
119.411
(/ft) | 25.47
22.22.22
21.72
21.73
18.41
111.333
650.46 | (/sf) | 9.0
2.36
1.4
1.4
1.8
1.5
1.7
1.1
1.3
1.7
1.7
1.7
1.8
1.3
1.7
1.7
1.7
1.7
1.7
1.7
1.7
1.7
1.7
1.7 | 39.4
12.5(7.6) | 726.5 | | | Prototype | | elta Cor
(MBtu) | | -4.31
-4.60
-4.78 | (DD)
(DDS)
sement | -3.54
-4.39
-4.52
-4.67
-4.67
copt
(DD)
(DDS) | | | value
000
-3.87
-4.58 | (SQQ)
(DDS) | Btr
Btr | | Town | ing Load | ă | W W B B B B B B B B B B B B B B B B B B | R - 13
R - 13
R - 37 | Slope
Curve | | rawi | | indow U-
1-Pane
2-Pane
3-Pane
R-10 | Slope | 29.33 M
10.58 M
5.11 M | | ¥. | Heati | ent
tu) | | 00000000000000000000000000000000000000 | .66
327
ft) H | 97
897
8000
8000
87
87
87
87 | sf) C | 375 RR RR RR 375 RR | flr) W
.15
.18 | 458
813 | 11 11 11
0 0 0
0 0 0 | | WYEC | | mpon
(KB | (/
30 15
77 5
89 4 | 252
77
111
111
11 1
147
11 1 | 2323.
39.3
(/f | 89 12
25 3
29 2
30 2
35 1
147 | ment (/ | 54 3
63 1
12 12 1162 93. | (/sf
.øø 4
.36 2 | 7. | Base Lical L | | N
N | | Delta Co
(MBtu) | ing
-5. | | (00)
(008) | t -5.
t -5.
t -5.
t -5.
ve(DD) | d Basem | flr -4.
flr -4.
flr -5.
flr -5. | ation
(7)
(2)
(3)
(3) | .001ELF
.001ELF | Typ
Resi | | Las Vega | | | 0 | * | Slope
Curve
Slab | R-6
R-5 2ft
R-5 2ft
R-10 2ft
R-10 4ft
Inte | Unheated | R-0
R-11 flr
R-19 flr
R-3Ø flr
Inte | Infiltra
ELF Acl
.0007(.7.
.0005(.5. | Slope/
Curve/ | | | | | omponent
(KBtu) | (/sf)
9.71
4.86
4.18 | 2.7
2.8
1.5
1.5
2005.1 | 37.07
(/ft | 55.73
41.90
39.56
38.06
35.06
25.462
1047.02 | (/sf) | 6.67
5.04
4.57
4.20
4.12
3.38
3.38
3.38
112,8.68 | (/sf)
22.77
10.93
6.96
2.29 | 983.67
-4.584 | | |------------|-------------|-----------------------|--|--|-------------------|---|----------|--|--|-----------------------|---------------------------------------| | | pe | Delta Co
(MBtu) | 111 | -2.5
-2.5
-2.5
•(DD) | 0 0 | -2.33
-2.74
-2.81
-2.86
-2.95
rcept
e(DD)
e(DDS) | | 08
98
-1.26
-1.48
-1.53
-1.67
-1.67
-(0D) | -value
e | | Btu
Btu | | | Cooling Loa | | Wa R-0 R-11 | 177 | ם כ | R-6
R-5
8ft
R-10 4ft
R-10 8ft
Inte
Slop
Curv | Crawi | R-6
R-11 flr
R-13 flr
R-30 flr
R-49 flr
Slope
Curve | Window U. 1-Pane 2-Pane 3-Pane R-10 | Slop | 24.24
24.24
6.57
M | | | ပိ | nponent
(KBtu) | (/sf)
17.47
6.98
5.30
3.80 | 84.
84.
1 | 01.40
(/ft | 6.73
3.40
2.89
2.39
1.89
.000
635.96 | (/sf) | 3.28
3.28
3.22
3.24
3.242
8.34
18.935 | (/sf flr)
3.34
2.31
1.34 | 4.229 | Load II II | | s Two | | Deita Com
(MBtu) | 8.3.9
8.3.9 | 8.8-
19.80-
19.30-
19.7-
19.7- | ا
آھ | -3.88
-3.98
-3.92
-3.93
-3.95
-3.95
-3.95
e(DD) | Basement | -2.33
-2.07
-2.07
-2.06
-2.06
(DD)
(DD) | ion
.000
-1.24
-2.40 | OIELF
OIELF
Bac | Typica
Residua | | Series | | _ | | - 1 3 3 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 | ur v | R-6
R-5
2ft
R-5
4ft
R-10 2ft
R-10 4ft
Inter
S-0Pe | Unheated | R-11 flr
R-13 flr
R-3Ø flr
Interc
Sloped | Infiltrat
ELF Ach
.0007(.69)
.0005(.49)
.0003(.29) | Slope/.Ø
Curve/.Ø | | | e Siding | | (KBtu) | (/sf)
11.09
4.33
3.36
2.43 | 2. 1. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. | 5.51
(/ft | 22.17
22.17
18.17
17.67
14.17
6.994
6.930 | (/sf) | 9.63
2.30
1.28
84
45
324
67.83 | (/sf)
38.16
10.66
6.36
1.32 | 73.11
6.827 | | | : Prototyp | _ | elta Comp
(MBtu) (| .00
-2.14
-2.45 | -2.8
-3.9
(00) | (DUS) 1
Sement | -4.30
-5.11
-5.23
-5.25
-5.35
cept
(DD)
5 | | .00
-4.40
-5.01
-5.27
-5.33
-5.50
-5.50
(DD) 13 | . 000
-3.96
-4.58 | DD) 4
DDS) 3 | Btr
Btr | | MApartment | ating Load | ۵ | Wall
R-0°
R-11
R-13 | -19
-27
-34
-0p | ם כ | R-6
R-5
8ft
R-5
8ft
R-10 8ft
Inter
Slope
Curve | Crawl | R-0
R-11 flr
R-19 flr
R-30 flr
R-49 flr
Inter
Slope
Curve | Window U-
1-Pane
2-Pane
3-Pane
R-10 | Slope
Curve | 9.66 MB
5.56 MB | | WYEC N | Неа | omponent
(KBtu) | (/sf)
15.43
5.49
3.90
2.48 | 2
1
1
145 | /.1/
(/ft | 14.5
2.6
2.6
1.3
1.3
2.3
6
6
7
8
2.5
9 | (/sf) | 2.46
.93
.55
.31
335
867.69 | 3.85
1.87
.60 | 625
8.750
Load | l l l l l l l l l l l l l l l l l l l | | ≥ | | Delta Com
(MBtu) | 0.0.0. | -8.02
-8.34
-8.54
-8.68
-8.77
-8.77 | (600) | -5.34
-5.65
-5.70
-5.70
-5.74
rcept
e(DD) | Basement | -4.30
-5.22
-5.44
-5.59
-5.69
(DD) | tion (/ | Ø1ELF
Ø1ELF
Bas | Typica
Residua | | Las Vega | | | | - 1388
- 1388
- 689
- 689 | lab | R-0
R-5 2ft
R-5 4ft
R-10 2ft
R-10 4ft
Inter
Slope | Unheated | R-0
R-11 fr
R-19 fr
R-30 fr
Interc
Slope | Infiltra
ELF Ach
.0007(.77)
.0005(.52)
.0003(.33) | Slope/.Ø
Curve/.Ø | | | | | | | | | • | | | |----------------|---------------------
---|--------------------------------------|--|-----------|--|---|---| | | Component
(KBtu) | (/sf)
.79
.36
.38
.28
.18 | 184.09
-6.835
(/ft) | 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - | (/st) | . 47
. 91
. 97
. 99
. 1.00
1.039
-58.36 | (/sf)
18
.10
.07 | 19.97
-1.008 | | | Delta Con
(MBtu) | | e(DD)
e(DDS)
asement | 98
94
94
93
93
(DD)
(DD) | | . 68
. 68
. 77
. 73
. 79
. 80
. 80
(DD)
(DD) | ev lee 80.00.00.00.00.00.00.00.00.00.00.00.00.0 | e(DD)
e(DDS)
MBtu
MBtu
MBtu | | ing Load | ۵ | X X X X X X X X X X X X X X X X X X X | Slope
Curve | -6
-5 4ft
-5 8ft
-10 4ft
-10 8ft
Inter
Slope
Curve | - X & L | 0
11 flr
19 flr
30 flr
38 flr
49 flr
Intercept
Slope(DD)
Curve(DDS | indow U-v | Slope
Curve
6.60 ME
1.71 ME
52 ME | | Cooling | | | ž | ىد بىد بىد بىد
م | Ū | ፞፞፞፞፞፞፞፞፞፞፞፞፟፠፟ዹፙፙፙ | ≯ | 4 11 11 | | ŭ | component
(KBtu) | (s t) 2 (s t | 182.02
39.389
(/ft) | 262. | : (/st) | 17
29
42
50
50
308.61 | (/sf fir)
01
.01
.01 | 162
162
164
 | | | ٥٥ | 9.0.4.4.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0. | _ | .04
.04
.03
.02 | ement | .98
.08
.085 | 8.89
8.84 | ELF
Bas
Typica | | 1 ¥0 | elta Co
(MBtu) | 0 | (S00)
(S00) | -11
-11
-11
-11
-11
-11
-11
-11
-11
-11 | e S | | . <u>.</u> | JELF
JELF
Typ
Resi | | er:
es | ۵ | 9099100 | 6 6 | <pre></pre> | B
P | f r - | trat
Ach
.56)
.40) | 7.001E | | Ser | | 0 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 | S S I a | CNIBB | eate | Ind
Sicur | | lope/
urve/ | | | | | | 8888
 | L'h | 7 7 7 7 7 7 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | Inf:
ELF:
0007
00005 | 20 | |
g u | | | | | | | | | | Pis | £ 🕤 | sf)
87
87
87
19
19
19
17 | .46
403
ft) | | Ç | 3 | f)
38
33
57
16 | 38 | | • | Component
(KBtu) | 8. 6. 8. 8. 9. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. | 391.
82.4
(/f | 26.
13.
10.
11.
8.
3.1
1.2 | <u>\$</u> | . 1 | 33.
9.
5. | 31.9 | | oty | Comp | 238
238
238
248
258
258
278
278 | ~ | .13
.18
.65
.65
.65 | | . 68
. 69
. 11
. 21
. 49 | 041
0824
0824 | • | | Prototype | (MBtu) | 97.89.00 | e(DD)
e(DDS)
asement | -4.
-6.
-6.
-6.
-7.
-7.
-7.
-6.
-7.
-6.
-6.
-6.
-6.
-6.
-6.
-6.
-6.
-6.
-6 | | -9.
-11.
-11.
-11.
(00)
(00S) | 2 . 4 | (00)
(00s)
8tu
8tu
8tu
8tu | | 70 | | - 118674 | lope (DD)
urve (DDS)
d Basemer | ft
ft
the
ope
cope
cope
cope
cope
cope
cope
cope | | ffr
ffr
ffr
nterc
lope(C | U - V - V - V - V - V - V - V - V - V - | 00 >>> | | Story
g Loa | | XX X X X X X X X X X X X X X X X X X X | Sto | 4 0 4 0 1 2 3 | - | 00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | indo
2011 × 3011 P | Slop
Curve
8.89 1
5.49 1
7.29 1 | | ⊑ | | | Heat | 7777
1115
1116
110 | Craw | RR-11
RR-11
R-11
R-11
R-11
R-11
R-11
R- | × | 4 1 | | One
Heat | | | | | | | ÷. | 11 11 11 | | 2: | ant
3tu) | /sf)
3.07
3.07
5.05
2.05
2.21
1.65
1.31
1.06 | 3.17
.995
/ft) | 6.83
5.93
7.603
7.603
7.603
7.603
7.603
7.603 | /sf) | 2.81
.05
49
84
.715
0.68 | f fl
3.65
1.46 | . 194
. 793
Load
Load | | WYE | отроп
(КВ |) 1 | 2400 | 1 64 | nt (| -1
115
-52 | s/) | s | | 5 | ပိုင္သ | | S) | 5.67
7.48
7.80
7.71
8.03 | өшө | 4.13
8.38
9.22
9.76
9.76
(\$) | | F Ba | | w | (MBtu) | 0
1112
1188
1188
1188 | <u> </u> | -5
-7
-7
-7
-7
-7
(00)
(00) | Base | - · · · · · · · · · · · · · · · · · · · | ; · · · · · · · · · · · · · · · · · · · | .øølELI
.øølELI
Tyj
Res | | Angele | ۵ | | lope
urve
lab | 24
42
42
44
44
44
46
46
46
46
46
46
46
46
46
46 | ted | ++ | Ach
(.63
(.28 | 00 | | v | | | รีบ ร | 118
118
C | nea. | 111
119
38
18
0 | Inf:
ELF
0007
0005 | 9.7 | | ٦ | | | • | ~ ~ ~ ~ ~ | 5 | ~ ~ ~ ~ | ⊷m <i>@`@`@</i> | w O | | | | Component
(KBtu) | (sf)
1.11
.59
.39
.39
.25 | 260.92
-10.200
(/ft) | -3.3
-2.6
-2.6
-1.8
-1.8
-1.8
-2.27 | . 28
1.03
1.11
1.11
1.18
1.18
1.21
1.25
1.25
1.25
1.33 | (/sf)
-6.81
-4.38
-2.85
-1.05 | 464.80
7.830 | |------------|-------------|---------------------|--|-------------------------------|---|--|--|---| | | סד | Delta Co
(MBtu) | 0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.0 | (DD)
(DDS)
sement | 30
27
27
26
24
24
(DD)
-(DD) | .000
.45
.50
.53
.54
.54
.56
(DD) – | value
. 98
. 35
. 57 | e (DD) -
e (DDS) -
MBtu
MBtu
MBtu | | | Cooling Loa | _ | X X X X X X X X X X X X X X X X X X X | Slope
Curve
Heated Ba | 90011 | R-11 flr
R-13 flr
R-38 flr
R-49 flr
R-49
flr
R-40 flr
Slope
Curve | Window U
1-Pane
2-Pane
3-Pane
R-10 | Slope
Curve
5.08 M
3.23 M
4.67 M | | • | ő | (KBtu) | (/sf)
3.86
1.71
1.38
1.08
1.08
7.70
7.70
7.56
.56 | 1052.05
-69.429
(/ft) | -4.8
-3.33
-2.1
-2.1
-2.1
-2.1
-2.1
-2.1
-2.1 | . 53
. 53
. 64
. 71
. 872
205.23 | -2.24
-1.92
-1.35 | -5.458
3.229
- Load = Load = = | | s Two | | Delta Cor
(MBtu) | ing
-1.25
-1.25
-1.45
-1.63
-1.63
-1.86
-1.94
-2.01 | (SQQ)
• (DDS) | 3
2
2
2
3
(DD)
(DD) | I fir .15
3 fir .22
3 fir .22
1 fir .22
2 fir .26
3 for .26
2 for .26
Curve(DD) -3
Curve(DDS) -3 | . 66
. 38
1.67 | .001ELF
.001ELF
Base
Typica
Residua | | Series | | | C | Slop
Curv | 2ft
2ft
2nt
Soop | | Infiltrat
ELF Ach
.0007(.56)
.0005(.40)
.0003(.24) | Slope/.6
Curve/.6 | | pe Siding | | ponent
(KBtu) | (,sf)
7.95
2.92
2.92
1.61
1.61
67 | 741.48
36.948
(/ft) | 27.81
16.31
14.06
12.06
7.68
2.680 | 1 | (/sf)
23.51
7.82
4.79 | 83.65
5.419 | | Prototype | סר | Delta Com
(MBtu) | .00
-2.40
-2.74
-3.02
-3.16
-3.35 | (DD)
(DDS) 1
sement | -1.98
-2.36
-2.45
-2.43
-2.53
(DD)
(DD) | .00
 r -2.76
 r -3.06
 r -3.21
 r -3.25
 r -3.35
 r -3.35
 r -4.05) 6 | . 00
-2.26
-2.70
-3.21 | (DD) 4
(DDS) 1
Btu
Btu
Btu | | Mid Town | ating Load | | Wall
R-0
R-1
R-11
R-13
R-27
R-34 | Slope
Curve
Heated Ba | R-6
R-5
8ft
R-10 8ft
R-10 8ft
Inter
Slope
Curve | 1111
4 4 8 8 8 4 4 4 6 7 6 7 6 7 6 7 6 7 6 7 6 7 6 7 6 | Window U-
1-Pane
2-Pane
3-Pane
R-10 | S-ope
Curve
19.37 M
5.99 M
6.94 M | | WYEC | H | omponent
(KBtu) | (/sf)
12.66
4.33
3.01
1.81
1.12
1.12
1.12
70 | 1521.14
103.639
(/ft) | 11.81
5.06
3.81
4.06
2.56
.000
834.51
38.524 | 1.8
.1
.1
.1
.1
.1
.1
.1
.1
.1
.1
.1
.1
.1 | (/sf flr)
1.81
.71 | -1.500
5.834
6 Load :: | | Angeles CA | | Delta Cor
(MBtu) | .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 | ope(DD) 1
rve(DDS) 1
ab | t -2.54
t -2.86
t -2.85
t -2.91
percept
pe(DD)
ve(DD) | -1.90
-2.74
-2.74
-2.95
-3.09
ercept
pe(DD) | ch
ch
66) .00
45) -1.32
26) -2.08 | 7.001ELF
7.001ELF
Typica
Residua | | Los Ang | | | | S. Cur | R-6
R-5 24
R-10 24
R-10 24
R-10 44
S-0
Cur | 905 700 | Infilt
ELF A
.0007(.
.0005(. | Slope/
Curve/ | | Load | Delta Component
(MBtu) (KBtu) | R-0 .96 .96 R-7 -15 .49 R-11 -22 .27 R-19 -26 .18 R-34 -25 .17 R-34 .26 R-34 .26 .17 | Slope(DD) 182.39
Curve(DDS)815
ed Basement (/ft) | 4ft19 -4.27
8ft19 -4.77
4ft19 -4.77
8ft19 -4.77
8ft18 -4.44
Intercept -3.674
Slope(DD) -103.45
Curve(DDS) 2.312 | (/sf) | fir .15 .32 fir .22 .44 fir .25 .56 .56 fir .28 .54 .54 fir .28 .54 .54 .54 .55 .50 .50 .50 .50 .50 .50 .50 .50 .50 | ow U-value (/sf) -Pane .00 -3.71 -Pane .21 -2.22 -Pane .33 -1.44 -10 .4652 | Slope(DD) -227.12
Curve(DDS) 3.279
.83 MBtu
.99 MBtu
.80 MBtu | |------------------------------|----------------------------------|---|--|--|-------------------------|--|--|---| | Cooling | Component
u) (KBtu) | (/sf)
27 3.57
27 1.46
.47 1.12
.65 .82
.81 .55
.86 .46
.94 .34 | 783.58
) -30.612
(/ft) Heat | 122 -5.77 R-6
19 -4.94 R-5
115 -3.61 R-5
119 -4.77 R-10
14 -3.27 R-10
-1397.61 | ement (/sf) Craw | .1721 R-0
.0705 R-11
.00 .07 R-19
.04 .14 R-36
.849
.368315.10 | n (/sf flr) Wind
.0084 1
.1769 2
.4447 R | ELF -1.854 ELF .938 Base Load = 3 Typical Load = 1 esidual Load = 1 | | ing Series Two | Delta
(MBti | C e i i ng
R - 0
R - 1
R - 11
R - 19
R - 22
R - 38
R - 38
R - 49
R - 49
R - 49
R - 60
R - 11 | Slope(DD)
Curve(DDS
Slab | R-6
R-5 2ft -
R-10 2ft -
R-10 4ft -
Intercept
Slope(DD)
Curve(DDS) | Unheated Base | R-11 flr
R-19 flr
R-3Ø flr
Slope(DD)
Curve(DDS) | Infiltration
ELF Ach
.0007(.56)
.0005(.40)
.0003(.24) | Slope/.001El
Curve/.001El | | Prototype Sidi | ta Component
3tu) (KBtu) | .00 7.33
-1.56 2.42
-1.78 1.72
-1.94 1.21
-2.02 .96
-2.12 .65 | DD) 441.06
DDS) 171.445
ement (/ft) | -2.66 21.98
-3.12 6.65
-3.18 4.65
-3.16 5.15
-3.24 2.65
cept220
(DD) 212.66 | (/sf) | .00 5.53
-3.20 .20
-3.4217
-3.5538
-3.5743
-3.66646
bt 182.00
DS) 199.446 | lue (/sf) .00 21.13 -2.11 6.47 -2.48 3.92 -2.91 .92 | D) 349.71
DS) 17.064 | | MApartment Pr
eating Load | Delt.
(MB | ₩ ₩ ₩ ₽ ₽ ₽ ₽ ₽ ₽ ₽ ₽ ₽ ₽ ₽ ₽ ₽ ₽ ₽ ₽ ₽ | Slope(DD)
Curve(DDS)
Heated Basemen | R-8
R-5 4ft
R-5 8ft
R-10 4ft
R-10 8ft
Interce
Slope(D) | Crawl | R-10 flr R-30 flr R-30 flr R-49 f | .) Window U-va
1-Pane
2-Pane
3-Pane
R-10 | Slope(DD)
Curve(DDS)
= 17.76 MBtu
= 4.97 MBtu
= 7.55 MBtu | | os Angeles CA WYEC | Delta Component
(MBtu) (KBtu) | Ceiling (/sf) R-0 .00 12-41 R-1 -5.02 4.04 R-11 -5.82 2.71 R-19 -6.54 1.51 R-22 -6.69 1.25 R-30 -6.90 .71 R-39 -7.11 .56 R-60 -7.11 .56 | Slope(DD) 1191.69
Curve(DDS) 151.959
Slab (/ft) | 2ft -3.23 2:
2ft -3.26 1:
2ft -3.25 2:
4ft -3.29 :
ntercept .0
lope(DD) 66.
urve(DDS) 113.7 | Unheated Basement (/sf) | R-0
R-11 flr -3.3201
R-19 flr -3.4522
R-30 flr -3.5335
Intercept679
Slope(DD) 429.56
Curve(DDS) -16.155 | Infiltration (/sf flr
ELF Ach
0005(.66) .00 1.33
0005(.45) -1.24 .30
0003(.26) -1.8622 | Slope/.001ELF -2.688
Curve/.001ELF 6.563
Base Load
Typical Load
Residual Load | | | omponent
(KBtu) | (/sf)
3.65
1.85
1.59
1.21
1.01 | 775.83
-18.978
(/ft) | -17.82
-18.67
-18.48
-18.91
-18.67
-18.255
-50.26 | (/sf) | 17
10
09
06
06
05
000
000
000 | (/sf)
2.71
1.14
.72 | 92.26 | |--|----------------------------------|---|--|---|-------------------------|--|--|---| | ng Load | Delta Co
(MBtu) | Wall
R-0
R-7 -2.00
R-11 -2.28
R-13 -2.71
R-19 -2.93
R-27 -3.21 | Slope(DD)
Curve(DDS)
ated Basement | 6 4ft -2.70
5 8ft -2.81
10 4ft -2.81
10 8ft -2.88
Intercept Slope(DD)
Curve(DDS) | - m | 1 flr .41
9 flr .39
7 flr .38
8 flr .35
1 flr .35
Slope(DD)
Curve(DDS) | 1-Pane .000
2-Pane .29
3-Pane37
R-1046 | Slope(DD)
Curve(DDS)
1.60 MBtu
9.95 MBtu | | Cooling | Component
) (KBtu) | (/sf)
34 3.16
51 2.40
56 1.72
96 1.14
60 1.11
12 .70
32 .58 | 1606.92
-45.560
(/ft) Hea | 11 -26.32 R-8
80 -24.45 R-6
66 -23.61 R-6
74 -24.09 R-1
56 -23.00 R-1
-20.700
-558.27 | ant (/sf) Cra | 21 | (/sf flr) Win
30 .50
22 .36
14 .21 | .714
.000
.000 | | Series Two | Delta C
(MBtu) | Ceiling
R-6
R-7
R-11 -8:
R-19 -9:
R-30 -10:
R-49
-11:
R-49 -11: | Slope(DD)
Curve(DDS)
Slab | R-6
R-5
R-5
R-5
R-10
R-10
R-10
Aft -3
Intercept
Slope(DD)
Curve(DDS) | Unheated Baseme | R-0
R-11 flr -1.2
R-19 flr8
R-3Ø flr6
Intercept
Slope(DD)
Curve(DDS) | Infiltration
ELF Ach
.0007(.43) .0
.0005(.30)2
.0003(.18)4 | Slope/.001ELF
Curve/.001ELF
Typi | | One Story Prototype Siding
Heating Load | Delta Component
(MBtu) (KBtu) | Wall
R-0
R-7
R-1
R-11 -16.77 10.53
R-13 -19.40 8.20
R-19 -20.70 7.04
R-27 -22.86 5.12
R-34 -24.18 3.94 | Slope(DD) 5077.75
Curve(DDS) -63.974
Heated Basement (/ft) | R-0
R-5 4ft -10.12 134.75
R-5 8ft -12.07 123.00
R-10 4ft -11.35 127.34
R-10 8ft -14.29 109.63
Intercept 71.868
Slope(DD) 3672.53
Curve(DDS) -36.189 | Crawl (/sf) | R-0
R-11 fir -21.10 7.40
R-19 fir -24.76 5.02
R-38 fir -27.01 3.56
R-49 fir -29.00 2.27
Intercept .000
Slope(DD) 4586.68
Curve(DDS) -92.157 | Window U-value (/sf) 1-Pane .00 98.22 2-Pane -9.75 45.46 3-Pane -12.82 28.85 R-10 -16.43 9.31 | Slope(DD) 3982.07
Curve(DDS) -9.913
125.13 MBtu
48.34 MBtu
-4.54 MBtu | | Medford OR WYEC O | Delta Component
(MBtu) (KBtu) | Ceiling (/sf) R-0 .000 28.06 R-7 -25.80 11.30 R-11 -29.92 8.63 R-19 -33.62 6.22 R-22 -35.10 5.27 R-38 -38.27 3.21 R-49 -39.29 2.55 R-60 -39.94 2.12 | Slope(DD) 5830.59
Curve(DDS) -185.269
Slab (/ft) 1 | R-0 -10.14 134.63
R-5 2ft -15.19 104.21
R-5 4ft -16.87 94.09 IR-10 2ft -16.05 99.03 IR-10 4ft -18.31 85.41 Intercept 58.895
Slope(DD) 7296.29
Curve(DDS) -108.274 | Unheated Basement (/sf) | R-0
R-11 fir -19.24 8.60
R-19 fir -22.93 6.20
R-30 fir -25.31 4.66
Intercept .542
Slope(DD) 5584.08
Curve(DDS) -442.862 | Infiltration (/sf flr) VELF Ach .0007(.58) .00 10.37 .0005(.42) -5.30 6.93 .0003(.26)-10.01 3.87 | Slope/.001ELF 11.461
Curve/.001ELF 4.789
Base Load = Typical Load = Residual Load = | | | omponent
(KBtu) | 2 % H H H H H H H H H H H H H H H H H H | 812.01
-20.147
(/ft) | -30.46
-30.71
-30.21
-30.71
-29.91
-29.36
-171.25
-2.851
(/sf) | | 1.60
1.80
.48
.29 | 1.314 | |--------------------|------------------------------------|--|---|---|--|---|--| | | ooling Load
Delta Cor
(MBtu) | 0.000010.44 | Slope(DD)
Curve(DDS) .
Heated Basement | R-6
R-5 4ft -1.01
R-5 8ft99
R-10 4ft -1.01
R-10 8ft98
Intercept98
Slope(DD)
Curve(DDS) | R-0
R-11 flr .17
R-19 flr .19
R-30 flr .20
R-38 flr .20
R-49 flr .20
Slope(DD)
Curve(DDS) | Window U-value 1-Pane .00 2-Pane16 3-Pane19 R-1022 | Slope (DD)
Curve (DDS)
13.28 MBtu
8.62 MBtu
2.91 MBtu | | | C
mponent
(KBtu) | 28 | 1820.31
-78.121
(/ft) | -45.21
-42.71
-42.21
-40.46
-36.636
1123.92
35.502 | -2.03
-1.16
93
78
78
380
380
43.183 | (/sf flr)
.36
.24 | . 375
. 208
 | | s Two | Delta Con
(MBtu) | | e(DD) 1
e(DDS) - | -1.59
-1.44
-1.47
-1.47
-1.40
-(DD) -1
e(DD) -1
Basement | -1.00
-1.00
34
35
25
25
00
00
00
00
00
00
00
0 | tion
66 | .001ELF
.001ELF
Bass
Typica
Residua | | ng Serie | _ | 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 | S S S S S S S S S S S S S S S S S S S | R-6
R-5
2ft
R-5
2ft
R-10 2ft
R-10 4ft
Inter
Slope
Curve | R-0
R-11 flr
R-19 flr
R-30 flr
Interc | Infiltra
ELF Ach
.0007(.43)
.0005(.30)
.0003(.18) | Slope,
Curve, . | | . P ! S | -, دي | | | | | | | | 9 | nponent
(KBtu) | (/sf)
(/sf)
11.51
11.51
9.59
7.37
7.37
8.27
8.27 | 1392.60
47.308
(/ft) | 181.92
142.42
129.17
133.42
115.157
78.157
7457.80
23.980 | 18.88
6.41
4.31
3.06
2.78
1.96
.000
.000 | (/sf)
83.59
33.52
20.98
6.23 | 21.587 | | • | elta Com
(MBtu) | 000
000
000
000
000
000
000
000
000
00 | (DD) 4392.6
(DDS) 47.3Ø
sement (/ft | -4.05 181.9 -5.63 142.4 -6.16 129.1 -5.99 133.4 -6.72 115.1 cept 78.15 (DD) 3457.8 (DDS) -23.98 | .00 18.8
-7.48 6.4
-8.74 4.3
-9.49 3.0
-9.66 2.7
-10.15 1.9
cept .00
(DD) 3914.9 | .00 83.5
-7.21 33.5
-9.02 20.9
-11.14 6.2 | (00) 2596.2
(00S) 21.58
Btu
Btu
Btu | | Town Prototype | ating Load
Delta Com
(MBtu) | 000
000
000
000
000
000
000
000
000
00 | DD) 4392.6
DDS) 47.3Ø
ement (/ft | -4.05 181.9 -5.63 142.4 -6.16 129.1 -5.99 133.4 -6.72 115.1 ept 78.15 DD) 3457.8 DDS) -23.98 | .00 18.8
-7.48 6.3
-8.74 4.3
-9.49 3.0
-9.66 2.7
10.15 1.9
bt .00
0) 3914.9 | Window U-value (/sf
1-Pane .00 83.5
2-Pane -7.21 33.5
3-Pane -9.02 20.9
R-10 -11.14 6.2 | Slope(DD) 2596.2
Curve(DDS) 21.58
56.90 MBtu
24.00 MBtu
.14 MBtu | | Mid Town Prototype | ting Load
Delta Com
(MBtu) | /sf) Wall (/sf) 9.45 | Slope(DD) 4392.6
Curve(DDS) 47.3Ø
eated Basement (/ft | -0 -4.05 181.9 -5 4ft -5.63 142.4 -5 8ft -6.16 129.1 -10 4ft -5.99 133.4 -10 8ft -6.72 115.1 Intercept 78.15 Slope(DD) 3457.8 Curve(DDS) -23.98 | -0 .00 18.8
-11 flr -7.48 6.4
-19 flr -8.74 4.3
-30 flr -9.68 2.7
-49 flr -10.15 1.9
Intercept .00
Slope(DD) 3914.9
Curve(DDS) -45.53 | indow U-value (/sf
1-Pane .00 83.5
2-Pane -7.21 33.5
3-Pane -9.02 20.9
R-10 -11.14 6.2 | Slope(DD) 2596.2
Curve(DDS) 21.58
6.90 MBtu
4.00 MBtu
.14 MBtu | | | | omponent
(KBtu) | (/sf)
3.57
1.81
1.56
1.19 | 0.0 | 761.05
-18.107
(/ft) | -30.99
-31.16
-31.49
-30.99
-30.99
-68.81
1.307 | (/sf) | 22
 | (/sf)
2.41
1.09
.69 | 93.52
089 | | |------------|--------------|--------------------|--|---|--|---|------------|--|--|--------------------------|---| | | Cooling Load | Delta Co
(MBtu) | Wall
R-0 .00
R-756
R-1163
R-1376 | -198
-278
-349 | Slope(DD)
Curve(DDS) .
Heated Basement | R-688
R-5 4ft80
R-5 8ft81
R-10 4ft82
R-10 8ft80
Intercept80
Slope(DD)
Curve(DDS) | Crawl | R-11 flr .16 R-19 flr .15 R-30 flr .15 R-38 flr .15 R-49 flr .15 R-49 flr .15 Curve(DDS) - | Window U-value 1-Pane .00 2-Pane19 3-Pane25 R-1032 | Slope | 11.26 MBtu
6.96 MBtu
1.36 MBtu | | | ပိ | omponent
(KBtu) | (/sf)
7.96
11 3.28
6 2.53 | 820.00 | 1759.90
-70.394
(/ft) | 7 -40.16
3 -37.66
7 -36.66
9 -37.33
1 -35.83
-32.871
-852.86 | nt (/sf) | -1.55
92
71
57
205
47.737 | (/sf flr)
.40
.26
.14 | . 28 | se Load II II I I I I I I I I I I I I I I I I | | ies Two | | Delta C
(MBtu) | | 540
540
560
560
560
560
560
560
560
56 | ope(DD)
rve(DDS)
ab | -1.07
ft -1.08
ft97
ft99
ft94
tercept
ope(DD)
rve(DDS) | ed Basemer | flr42
flr30
flr21
flr21
ntercept
Slope(DD) | ration
(ch
43) .00
30)17
18)32 | .001ELF
.001ELF | Typica
Residua | | ng Ser | | | | 1111. | OCU
CUT | R-0
R-5 2f
R-5 4f
R-10 2f
R-10 4f
Int
S-10 Cur | Unheate | R-0
R-11 f
R-19 f
R-30 f
Int | Infilt
ELF A
.0007(.
.0005(. | Slope/
Curve/ | | | ibis equ | | mponent
(KBtu) | (/sf)
24.86
11.22
9.27
7.10 | 0.4.w. | 4164.15
85.086
(/ft) | 210.05
160.38
144.88
149.55
128.22
85.750
3926.05 | (/sf) | 19.36
6.43
4.30
3.05
2.77
1.95
.000
3882.69 | (/sf)
82.30
31.82
19.83
5.74 | 2374.59
28.142 | | | nt Prototy | þe | Delta Co
(MBtu) | | | pe(UU)
ve(DDS)
Basement | -5.31
-6.81
-7.27
-7.13
-7.77
-7.77
-6(DD)
e(DDS) | | .000
-7.76
-9.03
-9.78
-10.45
-10.45
-10.00) | -value
000
-7.27
-9.000
-11.03 | e(DD)
e(DDS) | MBtu
MBtu | | part | eating Lo | | × × × × × 0 | 106 - | VIO
Curi
Heated | R-6
R-5 4ft
R-18 8ft
R-10 8ft
Inte | Crawl | R-0
R-19 fir
R-30 fir
R-49 fir
Slope
Curve | Window U 1-Pan 2-Pan 3-Pan R-10 | Su | 22.22 | | WYEC | ž | omponent
(KBtu) | (/sf)
29.15
11.11
8.23
5.64 | | 5132.42
-36.417
(/ft) | 166.22
133.55
123.05
128.22
114.55
88.696
6971.56 | t (/sf) | 10.50
6.04
4.52
3.54
3.721.73 | (/sf flr)
8.83
5.55
2.88 | 7.333 | | | J OR | | Delta Co
(MBtu) | ling
-10.
1 -12.
9 -14. | 2 - 15.3
9 - 15.7
9 - 16.1 | ve (DDS) | t -7.61
t -7.93
t -7.77
t -8.18
ercept
pe(DD) | d Basemen | -5.31
-7.99
r -8.90
r -9.49
r -9.60
ve(DD) | ration
ch
58) .00
43) -3.94
25) -7.15 | .001ELF
.001ELF
Ba | Typica
Residua | | Medford | | | 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 | · | 0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0 | R-6
R-5 2f
R-10 2f
R-10 4f
R-10 4f
S-0
| Unheate | R-0
R-11 fl
R-19 fl
R-30 fl
Int | 4 € € € | Slope/
Curve/ | | | | ٠ | omponent
(KBtu) | (/sf)
4.67
2.35 | | | | 008.18
25.919 | (/ft) | 23.49
18.61
17.10
16.80
15.05
10.389
1432.96 | (/sf) | 4 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 | -6.8
20.10 | (/sf)
4.00
1.19
.72
.16 | 60.62
3.448 | | |---------------------|------------|--|--|--|--|--|--|--------------------------|---|-------------------------|---|--|---|---|---| | | | elta (
(MBtu) | | -2.98
-3.45 | 4.10 | 4
ա. | (00)
(008) | sement | -3.62
-4.43
-4.68
-4.73
-5.02
(DD)
(DD) | | 0.0
0 0
0 1 | - (S00) | value
62
61
61 | (SQQ)
(QQ) | MBtu
MBtu
MBtu | | | ing Load | | ¥a 1 1
R-Ø
R-7 | R-11 | -2- | က | Slope | eated Ba | -6
-5 4ft
-5 8ft
-10 4ft
10 8ft
Slope
Curve | - ×er | | Stope | indow U-
1-Pane
2-Pane
3-Pane
R-10 | Slope | 40.70 M
18.70 M
1.25 M | | | Cooling | ــ د د | 91 | ~ | - - | ** | øn | Ĭ | ~~~~ | ن
د | ~~~~~~ | വര |
×
(008 | 2.7 | וווו
סיסיס | | | | omponent
(KBtu) | (/sf)
8.26
3.3 | ம் ஐ ப | : | ō r 0 | 697.7
51.33 | (/ft) | -1.15
-2.12
-1.64
-2.24
-1.70
.000
.561.67 | (/sf | 7.144 .:
7.144 .:
82 82 | 66.3
1.34 | (/sf + 2.8
2.8
1.28 | 4.35 | e Loa
- Loa
Loa | | Two | | (MBtu) | 9
9.7- | 8.0 | 16.9
10.9 | -11.27
-11.58
-11.78 | (00)
(008) | | -7.71
-7.87
-7.89
-7.89
-7.80
(OD) - | Basement | -3.62
-1.21
-1.21
-1.66
66 | (S00) | tion (| 31ELF
31ELF | Bas
Typica
Residua | | 96.188 | | ۵ | Ceilin
R-0
R-7 | 44 | 3 6 | R-38
R-49
R-60 | Slope (| Slab | 2ft
4ft
2ft
14ft
Slope
Curve | ated | 11 ++ | Slope | Ach
(.47
(.34
(.20) | pe/.0011
ve/.0016 | | | S | | | | | | | ., - | | R R R R R R R R R R R R R R R R R R R | Unhe | R-6
R-11
R-19
R-36 | | Inf:
ELF.
.0007
.0005
.0003 | Slo | | | Siding | | ٠,٠ | | | | | | | | | | | | | | | ٥ | | (KBtu) | (/sf)
16.26
7.95 | 6.77 | 4.58
3.31 | 2.53 | 290.95
49.627 | (/ft) | 66.31
44.93
36.98
39.51
27.88
3.198
373.59 | (/sf) | 12 1 12 15 15 15 15 15 15 15 15 15 15 15 15 15 | 1.3
.43 | (/sf)
75.82
34.31
21.73
6.93 | 954.65
-3.136 | | | ٥ | | Compon
(KB | (/s
.00 16. | 0.67 6.
2.31 5. | 3.13 4.
4.55 3. | 5.43 2. | 3290.9
-49.62 | t (/f | 7.69 66.3
2.54 44.9
2.56 36.9
2.14 39.5
4.07 27.8
t 3.19
2373.5
S) -20.74 | ST | .00 12.1
.01 2.3
.49 .7
.951
.283 | 2951.3
) -19.43 | .00 /sf
.00 75.8
7.67 34.3
0.00 21.7 | 2954.6 | | | Prototype | pe | odmo
EX) | (/s
.00 16. | 1 -10.67 6.
3 -12.31 5. | 9 -13.13 4.
7 -14.55 3. | 4 -15.43 2. | e(DD) 329Ø.9
e(DDS) -49.62 | 5 | -7.69 66.3
t -11.24 44.9
t -12.56 36.9
t -12.14 39.55
t -14.07 27.8
ercept 3.19
pe(DD) 2373.5
ve(DDS) -20.74 | ST | .00 12.1
-15.01 2.3
-17.49 .7
-18.951
-19.283
20.24 -1.0 | pe(DD) 2951.3
ve(DDS) -19.43 | U-value (/sf
ne -7.67 34.3
ne -10.00 21.7
-12.73 6.9 | pe(DD) 2954.6
ve(DDS) -3.13 | MBtu
3 MBtu
3 MBtu | | Story Prototype | ng Loa | elta Compon
(MBtu) (KB | (/s
.00 16. | -11 -10.67 6.
-13 -12.31 5. | -19 -13.13 4.
-27 -14.55 3. | -34 -15.43 2. | e(DD) 329Ø.9
e(DDS) -49.62 | eated Basement (/f | -0 4ft -11.24 44.9
-5 4ft -11.25 36.9
-5 8ft -12.56 36.9
-10 4ft -12.14 39.5
-10 8ft -14.07 27.8
Intercept 3.19
Slope(DD) 2373.5
Curve(DDS) -20.74 | rawl (/sf | -0
-11 flr -15.01 2.3
-19 flr -17.49 .7
-30 flr -18.951
-38 flr -19.283
-49 flr -20.24 -1.0 | e(DD) 2951.3
e(DDS) -19.43 | 1-Pane .00 75.8
2-Pane -7.67 34.3
3-Pane -10.00 21.7
R-10 -12.73 6.9 | e(DD) 2954.6
e(DDS) -3.13 | 85.92 MBtu
34.98 MBtu
.88 MBtu | | tory Prototype | Loa | t Delta Compon
) (MBtu) (KB | Wall (/s
R-0 .00 16. | R-11 -10.67 6. | R-19 -13.13 4.
R-27 -14.55 3. | 8 R-34 -15.43 2. | 84 Slope(DD) 3290.9
88 Curve(DDS) -49.62 | Heated Basement (/f | R-0 -7.69 66.3
R-5 4ft -11.24 44.9
R-5 8ft -12.56 36.9
R-10 4ft -12.14 39.5
R-10 8ft -14.07 27.8
Intercept 3.19
Slope(DD) 2373.5
Curve(DDS) -20.74 | f) Crawl (/sf | 2 R-0 .00 12.1
2 R-11 flr -15.01 2.3
3 R-19 flr -17.49 .7
1 R-30 flr -18.951
R-38 flr -19.283
R-49 flr -20.24 -1.0 | 6ø Slope(DD) 2951.3
16 Curve(DDS) -19.43 | fir) Window U-value (/sf
41. 1-Pane .00 75.8
57 2-Pane -7.67 34.3
85 3-Pane -10.00 21.7
8-10 -12.73 6.9 | 70 Slope(DD) 2954.6
42 Curve(DDS) -3.13 | ad = 85.92 N
ad = 34.98 N | | Story Prototype | eating Loa | ut Delta Compon
cu) (MBtu) (KB | (/sf) Wall (/s
17.73 R-0 .00 16. | 5.38 R-11 -10.67 6.
3.85 R-13 -12.31 5. | 3.26 R-19 -13.13 4.
2.47 R-27 -14.55 3. | 2.00 R-34 -15.43 2.
1.57
1.30 | 3600.04 Slope(DD) 3290.9
102.808 Curve(DDS) -49.62 | eated Basement (/f | 43.90 R-0 -7.69 66.3
25.17 R-5 4ft -11.24 44.9
19.33 R-5 8ft -12.56 36.9
22.10 R-10 4ft -12.14 39.5
14.45 R-10 8ft -14.07 27.8
.000 Intercept 3.19
3824.72 Slope(DD) 2373.5 | t (/sf) Crawl (/sf | 7.15 R-0 .00 12.1
2.12 'R-11 flr -15.01 2.3
.83 R-19 flr -17.49 .7
.01 R-30 flr -18.951
R-38 flr -19.283
R-49 flr -20.24 -1.0 | 2984.60 Slope(DD) 2951.3
225.916 Curve(DDS) -19.43 | (/sf fir) Window U-value (/sf
9.41. 1-Pane .000 75.8
6.57 2-Pane -7.67 34.3
3.85 3-Pane -10.00 21.7
R-10 -12.73 6.9 | 0 Slope(DD) 2954.6
2 Curve(DDS) -3.13 | se Load = 85.92 N
at Load = 34.98 N
at Load = .88 N | | One Story Prototype | eating Loa | Component Delta Compon
J) (KBtu) (MBtu) (KB | (/sf) Wall (/s
00 17.73 R-0 .00 16. | 02 5.38 R-11 -10.67 6.
37 3.85 R-13 -12.31 5. | .28 | 23 2.00 R-34 -15.43 2.
88 1.57
30 1.30 | 3600.04 Slope(DD) 3290.9
-102.808 Curve(DDS) -49.62 | /ft) Heated Basement (/f | 41 43.90 R-0 -7.89 66.3
49 19.33 R-5 8ft -11.54 44.9
63 22.10 R-10 4ft -12.56 36.9
38 22.10 R-10 4ft -12.14 39.5
38 24.72 R-10 8ft -14.07 27.8
Intercept 3.19
Slope(DD) 2373.5
Curve(DDS) -20.74 | sement (/sf) Crawl (/sf | 69 7.15 R-0 .00 12.1
43 2.12 R-11 flr -15.01 2.3
43 .83 R-19 flr -17.49 .7
7101 R-30 flr -18.951
R-38 flr -19.283
R-49 flr -20.24 -1.0 | 2984.60 Slope(DD) 2951.3
-225.916 Curve(DDS) -19.43 | sf fir) Window U-value (/sf
9.41. 1-Pane .00 75.8
6.57 2-Pane -7.67 34.3
3.85 3-Pane -10.00 21.7
R-10 -12.73 6.9 | ELF 12.370 Slope(DD) 2954.6
ELF 1.542 Curve(DDS) -3.13 | Base Load = 85.92 N
Typical Load = 34.98 N
esidual Load = .88 N | | One Story Prototype | eating Loa | omponent Delta Compon
(KBtu) (MBtu) (KB | (/sf) Wall (/sf) (/s | 11 -19.02 5.38 R-11 -10.67 6.
19 -21.37 3.85 R-13 -12.31 5. | 22 -22.28 3.26 R-19 -13.13 4.
30 -23.50 2.47 R-27 -14.55 3. | 23 2.00 R-34 -15.43 2.
88 1.57
30 1.30 | 3600.04 Slope(DD) 3290.9
-102.808 Curve(DDS) -49.62 | /ft) Heated Basement (/f | 1 43.90 R-0 -7.69 66.3
2 25.17 R-5 4ft -11.24 44.9
3 22.10 R-10 4ft -12.14 39.5
8 14.45 R-10 8ft -14.07 27.8
1000 Intercept 3.19
3824.72 Slope(DD) 2373.5
-27.226 Curve(DDS) -20.74 | ement (/sf) Crawl (/sf | 69 7.15 R-0 .00 12.1
43 2.12 R-11 flr -15.01 2.3
43 .83 R-19 flr -17.49 .7
7101 R-30 flr -18.951
R-38 flr -19.283
R-49 flr -20.24 -1.0 | 2984.60 Slope(DD) 2951.3
-225.916 Curve(DDS) -19.43 | on (/sf flr) Window U-value (/sf
.00 9.41, 1-Pane .00 75.8
-4.38 6.57 2-Pane -7.67 34.3
-8.57 3.85 3-Pane -10.00 21.7
R-10 -12.73 6.9 | 12.370 Slope(DD) 2954.6
1.542 Curve(DDS) -3.13 | Base Load = 85.92 Wypical Load = 34.98 Wsidual Load = .88 | | | | mponent
(KBtu) | (/sf)
3.75
3.75
1.66
1.35
1.98
1.98
1.98 | 606.17
17.090
(/ft) | 35.22
28.22
27.72
26.72
26.72
163.29 | (/sf) | 5.46
5.46
5.48
5.48
5.49
5.425
106.16 | (/sf)
-3.36
-4.26
-2.86 | 551.56
16.070 | |------------------|-------------|--------------------
---|------------------------------|---|------------|---|--|---| | | p | Delta Co
(MBtu) | 11.1.00 | e (DD)
e (DDS)
asement | -1.35
-1.69
-1.63
-1.65
-1.65
-1.69
-1.69
-1.69
-1.69
-1.69
-1.69 | | .000
 | U-value
ne .000
ne13
ne .07 | MBtu
MBtu
MBtu
MBtu
MBtu | | | Cooling Loa | | W R R B B B B B B B B B B B B B B B B B | Slop
Curv
Heated B | R-6
R-5 4ft
R-5 8ft
R-10 4ft
R-10 8ft
Slope
Curve | Crawi | R-6
R-11 fr
R-13 fr
R-3 fr
R-4 fr
R-4 fr
R-4 fr
R-6 fr
Slope | Window U.
1-Pan
2-Pan
3-Pan
R-10 | Slope
Curve
27.23 h
18.53 h
8.78 h | | | Š | omponent
(KBtu) | (/sf)
7.33
2.59
1.83
1.15
.97
.58
.58 | 995.06
40.716
(/ft) | -5.03
-5.53
-4.53
-6.53
-4.03
-4.03
-71.253 | (/sf) | 2.35
4.01
4.44
4.71
5.439
978.52
73.266 | /sf flr)
2.61
1.89
1.14 | 3.875
208
Load =
 Load = | | Two | | elta (
(MBtu) | 00
-2.855
-3.30
-3.30
-3.82
-4.05
-4.05
-4.13 | (S00)
(002) | -2.98
-2.98
-2.94
-2.98
-2.92
(DD) -1
(DDS) | Basement | -1.35
89
.07
07 | tion (/
.000
87
1.76 | 001ELF
001ELF
Base
Typical
Residual | | Series | | ۵ | 7 | Slope
Curve
Slab | | Unheated | -0
-11 fir
-19 fir
-30 fir
Inter
Slope
Curve | Infiltrat
ELF Ach
0007(.47)
0005(.35)
0003(.21) | Slope/.Ø.
Curve/.Ø | | ding | | | | | ~ CC CC CC | ر | œ œ œ | | | | ŝ | | mponent
(KBtu) | (/sf)
15.87
7.16
7.16
5.92
4.55
3.87
2.79
2.79 | 2665.44
53.025
(/ft) | 65.34
37.34
29.59
31.59
21.59
21.59
1719.35
1719.35 | (/sf) | 11.37
2.37
2.97
.20
.02
.49
-1.49
2385.52
32.362 | (/sf)
63.41
23.97
14.90
4.24 | 745.44
24.865 | | Prototype | | elta Co
(MBtu) | . 4 4 1 | (DD)
(DDS)
sement | -4.21
-5.33
-5.64
-5.66
-5.96
(DD)
(DD) | | .000
-5.40
-6.24
-6.70
-6.71
-7.12
(DD)
(DD) | value
- 6.00
- 6.000
- 8.52 | e(DD) 1
e(DDS) MBtu
MBtu
MBtu
MBtu | | d Town | ing Load | ۵ | ************************************** | Slope
Curve | -6
-5 4ft
-5 8ft
-10 4ft
-10 8ft
Inter
Slope
Curve | - × a r | | indow U-
1-Pane
2-Pane
3-Pane
R-10 | Slope
Curve
40.28 MI
16.91 MI
2.39 MI | | . <u>.</u>
** | Heat | e) t | ~60000000000000000000000000000000000000 | 48
83
t) H | 404040N0
KKKKK | 0 | 0 ~ 1 0 8 00 0 | - 84
64
84 | מסם אש | | ₹MŦ | | omponen
(KBtu | 7.001
7.001
7.001
7.001
7.001
7.001
7.001
7.001
7.001
7.001
7.001
7.001
7.001
7.001
7.001
7.001
7.001
7.001
7.001
7.001
7.001
7.001
7.001
7.001
7.001
7.001
7.001
7.001
7.001
7.001
7.001
7.001
7.001
7.001
7.001
7.001
7.001
7.001
7.001
7.001
7.001
7.001
7.001
7.001
7.001
7.001
7.001
7.001
7.001
7.001
7.001
7.001
7.001
7.001
7.001
7.001
7.001
7.001
7.001
7.001
7.001
7.001
7.001
7.001
7.001
7.001
7.001
7.001
7.001
7.001
7.001
7.001
7.001
7.001
7.001
7.001
7.001
7.001
7.001
7.001
7.001
7.001
7.001
7.001
7.001
7.001
7.001
7.001
7.001
7.001
7.001
7.001
7.001
7.001
7.001
7.001
7.001
7.001
7.001
7.001
7.001
7.001
7.001
7.001
7.001
7.001
7.001
7.001
7.001
7.001
7.001
7.001
7.001
7.001
7.001
7.001
7.001
7.001
7.001
7.001
7.001
7.001
7.001
7.001
7.001
7.001
7.001
7.001
7.001
7.001
7.001
7.001
7.001
7.001
7.001
7.001
7.001
7.001
7.001
7.001
7.001
7.001
7.001
7.001
7.001
7.001
7.001
7.001
7.001
7.001
7.001
7.001
7.001
7.001
7.001
7.001
7.001
7.001
7.001
7.001
7.001
7.001
7.001
7.001
7.001
7.001
7.001
7.001
7.001
7.001
7.001
7.001
7.001
7.001
7.001
7.001
7.001
7.001
7.001
7.001
7.001
7.001
7.001
7.001
7.001
7.001
7.001
7.001
7.001
7.001
7.001
7.001
7.001
7.001
7.001
7.001
7.001
7.001
7.001
7.001
7.001
7.001
7.001
7.001
7.001
7.001
7.001
7.001
7.001
7.001
7.001
7.001
7.001
7.001
7.001
7.001
7.001
7.001
7.001
7.001
7.001
7.001
7.001
7.001
7.001
7.001
7.001
7.001
7.001
7.001
7.001
7.001
7.001
7.001
7.001
7.001
7.001
7.001
7.001
7.001
7.001
7.001
7.001
7.001
7.001
7.001
7.001
7.001
7.001
7.001
7.001
7.001
7.001
7.001
7.001
7.001
7.001
7.001
7.001
7.001
7.001
7.001
7.001
7.001
7.001
7.001
7.001
7.001
7.001
7.001
7.001
7.001
7.001
7.001
7.001
7.001
7.001
7.001
7.001
7.001
7.001
7.001
7.001
7.001
7.001
7.001
7.001
7.001
7.001
7.001
7.001
7.001
7.001
7.001
7.001
7.001
7.001
7.001
7.001
7.001
7.001
7.001
7.001
7.001
7.001
7.001
7.001
7.001
7.001
7.001
7.001
7.001
7.001
7.001
7.001
7.001
7.001
7.001
7.001
7.001
7.001
7.001
7.001
7.001
7.001
7.001
7.001
7.001
7.001
7.001
7.001
7.001
7.001
7.001
7.001
7.001
7.001
7.001
7.001
7.001
7.001 | 3349.4
-20.18
(/ft | 35.3
17.5
12.8
15.0
9.3
2215.9 | t (/sf | | 7.6.
7.6.
4.9.
2.6(| 7.333
5.104
se Load
al Load | | 7 | | elta Co
(MBtu) | 9 .00
-7 .12
-8 .26
-9 .28
-9 .63
-10 .09
-10 .60 | (sgg) | -5.41
-6.12
-6.31
-6.22
-6.45
(00) | аѕешел | 7946 | .888
-3.23
-5.97 | ELF
ELF
Typic
esidu | | Memphis TN | | Q | Cei.
RR-6i.
RR-11
RR-120
RR-380
RR-380
RR-498 | Slope
Curve
Slab | R-6
R-5 2ft
R-5 4ft
R-10 2ft
R-10 4ft
Interc
Slope
Curve | Unheated B | R-0 -4
R-11 flr -5
R-19 flr -6
R-30 flr -6
Intercept
Slope(DD)
Curve(DDS) | Infiltrat
ELF Ach
.0007(.79)
.0005(.56)
.0003(.34) | Slope/.001
Curve/.001 | | | | ٠ | | | | | | | | | | | | | | | | | | |------------|---------|---------------------|------------------------|--------------
-------------|---|--------|----------------------|---------|----------------|----------------|-------------------------------------|----------|---|--------------------------------------|----------|------------------------------------|--------------------------|-------------------------------| | | | Component
(KBtu) | (/sf)
3.38
1.35 | <u>.</u> | Θ4 | · (C) | | 407.27
41.021 | (/ft) | 000 | . C. E | 27.483
296.48
173 | (/sf) | 3.99
6.64
5.67
7.11
5.12 | 5.1
26.
48.6 | (/sf) | -2.47
-2.29
98 | -447.53
13.406 | | | | | elta Com
(MBtu) | | ~ ∞ | യ്ഠ | . o. | | (S00)
(00) | sement | -1.20 | | -1.47
cept
(00)
(00S) | | | (00)
(00)
(00s) | va i ue | | (800)
(008) | Btr
Btr
Btr | | | ng Load | ۵ | Wall
R-0
R-7 | R-11
R-13 | 1,0 | 1 (1) | | Slope | ated Ba | 4-4 | 00 0 | Inter
Slope
Curve | - we | 11111
11111
1286
1486
1777 | Sic | -N wopui | 1-Pane
2-Pane
3-Pane
R-10 | Slope | 25.45 M
17.57 M
8.18 M | | | Coolin | | | | | | | | £ | 0< 0< 0 | < 0< 0 | × | ڻ
ٽ | ~ ~ ~ ~ ~ ~ ~ | | lr) ¥i | 015.00 | თო | וו וו וו
סיסיסי | | | | Component
(KBtu) | (/sf)
7.55
2.70 | 6,8 | 201 | |
 | .069.69
34.374 | (/ft) | CA CA & | -2.36 | -1.69
.000
-529.98
27.188 | t (/sf) | 1.98
3.52
3.87
4.09 | 4.66Ø
-76Ø.8Ø
46.517 | (/sf fl | 2.32
1.57
.89 | 2.72 | Loa
Loa | | Two | | elta Com
(MBtu) | . 6
6.0 | -3.37 | 0.0 | 3 4 4
3 4 6 | 4 4 | (00) 1
(00s) 1 | | -2.46 | i 4. | -2.44
cept
(DD)
(DDS) | asement | -1.28
28
67 | | i on | .00
89
-1.71 | IØ1ELF
IØ1ELF | Base
Typica
Residua | | eries | | - - - | Ceiling
R-0
R-7 | 77 | 7 | 7 - 7 - 7 - 7 - 7 - 7 - 7 - 7 - 7 - 7 - | 4.0 | Slope (I
Curve (I | Slab | 2ft | | 4ft
Inter
Slope
Curve | heated B | <u> </u> | Intercept
Slope(DD)
Curve(DDS) | = | 210 8 | lope/.00
urve/.00 | | | Ň | | | | | | | | | | 8 8 6
6 6 1 | R-10 | -1 | Unhe | R-11
R-11
R-19 | | 4-1 | 1999
1999
1999 | S | | | e Siding | | component
(KBtu) | (/sf)
15.96
7.00 | | | | | 96.79
17.496 | (/ft) | აფ.
დ.დ. | 1.6 | 19.52
-3.799
Ø76.94
-5.922 | (/sf) | 12.06
2.68
1.23
.39 | 0 CM 4 CM | (/sf) | 63.48
23.24
14.40
4.00 | 631.43
29.282 | | | Prototype | | lta Comp
MBtu) (| 6.0 | -3.25 | 9 60 | 44 | | (DD) 24
(DDS) 8 | ement | -5.04 | -6.36
-6.28 | N | | .88
-5.63
-7.60
-7.11 | . ° (| a l ue | .00
-5.80
-7.07
-8.56 | (00)
(00S) | MBtu
MBtu
MBtu | | | Load | De (| ₩
R = 1
7 | | 77 | R-27
R-34 | | Slope (Curve (C | ed Bas | | 8ft
4ft | 8ft
Inter
Slope
Curve | _ | | Inter
Slope
Curve | 10 w O-v | 1-Pane
2-Pane
3-Pane
R-10 | Slope(
Curve(| 8.51 MB
5.85 MB
2.52 MB | | MApartment | eating | | | | | | | | Heat | R-6
R-5 | - 2 | R-10 | Cra¥ | - A A A A A A A A A A A A A A A A A A A | 1
4 | r) Wind | | | 11 II II | | ΤMΥ | I | ponent
(KBtu) | (/sf)
19.51 | 101 | ຄຸດກຸ | 4. | 4.4 | 1149.35 | (/ft) | 40.52
21.35 | യസ | 11.69
.000
2901.78
24.704 | (/sf | 3.65
1.32
.57
.08 | -1.245
1822.26
169.182 | (/sf flr | • | 7.208 | se Load
al Load | | • | | (MBtu) (I | 60.0 | -8.54 | 0
0
0 | 10.3
10.6 | -10.87 | (00)
(00s) | | 6.6 | -6.76 | 6.88
(5.88
(5.88 | semen | -5.9
-6.9
-7.1 | , | tion | | Ø1ELF
Ø1ELF | Ba
Typic
Residu | | |) | _
Q | Ceiling
R-8 | -1- | - 2 | 98 | 689 | Slope (I
Curve (I | Slab | 2 | 40 | ر ن ن ف د د
4 ف م م | t 6 | + + + | Intercept
Slope(DD)
Curve(DDS) | filtrat | Ach
(.79
(.56
(.34 | lope/.0016
urve/.0016 | | | Метор |) | | | | | | | | | 1 1 | R-5 | 7 - | C
L | 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 | | - | ELF
.00007
.00005 | S | | | | Cooling Load | Delta Component
(MBtu) (KBtu) | Wall (/sf) R-0 R-0 R-7 R-7 R-11 R-11 R-13 R-13 R-13 R-13 R-19 R-27 R-34 R-34 R-34 R-53 R-57 | Slope(DD) 695.02
Curve(DDS) 36.169
Heated Basement (/ft) | 00448898 | Crawl (/sf) | R-Ø
R-11 flr94 3.37
R-19 flr -1.66 2.90
R-30 flr -2.11 2.61
R-38 flr -2.21 2.54
R-49 flr -2.50 2.35
Intercept 1.726
Slope(DD) 1248.92
Curve(DDS) -162.303 | Window U-value (/sf) 1-Pane .00 -6.98 2-Pane .12 -6.34 3-Pane .52 -4.20 R-10 .98 -1.68 | Slope(DD) -758.90
Curve(DDS) 18.725
76.25 MBtu
50.30 MBtu
19.39 MBtu | |--------------------|--------------|----------------------------------|---|--|--|-------------------------|---|--|--| | ding Series Two | ပိ | Delta Component
(MBtu) (KBtu) | Ceiling (/sf) R-0 .00 10.29 R-7 -9.92 3.85 R-11 -11.50 2.82 R-19 -12.92 1.90 R-22 -13.37 1.61 R-30 -14.33 .98 R-49 -14.67 .76 R-60 -14.89 .62 | Slope(DD) 1717.25
Curve(DDS) 3.017
Slab (/ft) | R-Ø -6.06 .41 R-5 2ft -6.36 -1.40 R-5 4ft -6.39 -1.58 R-10 2ft -6.37 -1.46 R-10 4ft -6.37 -1.22 Intercept .000 Slope(DD) -615.40 Curve(DDS) 63.848 | Unheated Basement (/sf) | R-0
R-11 flr -1.22 3.19
R-19 flr -1.88 2.76
R-30 flr -2.30 2.49
Intercept 1.683
Slope(DD) 1123.24
Curve(DDS) -131.739 | Infiltration (/sf flr)
ELF Ach
.0007(.56) .00 8.41
.0005(.40) -3.14 6.38
.0003(.25) -6.73 4.04 | Slope/.001ELF 14.578 Curve/.001ELF -3.653 Base Load = Typical Load = Residual Load = | | Story Prototype Si | eating Load | Delta Component
(MBtu) (KBtu) | Wall (/sf) R-0 .000 1.26 R-788 .48 R-11 -1.01 .36 R-13 -1.12 .26 R-19 -1.18 .21 R-27 -1.25 .15 R-34 -1.29 .11 | Slope(DD) 125.69
Curve(DDS) 20.256
Heated Basement (/ft) | R-Ø -1.53 .47 R-5 4ft -1.79 -1.09 R-6 8ft -1.81 -1.21 R-10 4ft -1.82 -1.28 R-10 8ft -1.84 -1.40 Intercept -1.425 Slope(DD) -12.51 Curve(DDS) 1.614 | Crawl (/sf) | R-0 1.04 R-11 flr -1.05 36 R-19 flr -1.17 28 R-38 flr -1.24 24 R-49 flr -1.25 .24 Intercept .152 Slope(DD) 103:40 Curve(DDS) 13.783 | Window U-value (/sf) 1-Pane .00 3.93 2-Pane52 1.12 3-Pane60 .67 R-1070 .14 | Slope(DD) 51.50
Curve(DDS) 3.687
7.24 MBtu
1.55 MBtu | | Miami FL WYEC | Ĭ | Delta Component
(MBtu) (KBtu) | Ceiling (/sf) R-0 .00 2.05 R-1 -2.10 .68 R-11 -2.44 .46 R-19 -2.74 .27 R-22 -2.81 .27 R-30 -2.96 .12 R-49 -3.00 .10 R-60 -3.00 | Slope(DD) 216.32
Curve(DDS) 21.729
Slab (/ft) | R-Ø -1.58 .17 R-5 2ft -1.6313 R-5 4ft -1.6313 R-10 2ft -1.6313 R-10 4ft -1.6313 Intercept .000 Slope(DD) -66.72 Curve(DDS) 8.113 | Unheated Basement (/sf) | R-0
R-11 flr -1.6503
R-19 flr -1.6503
R-30 flr -1.6503
Intercept020
Slope(DD) -12.69
Curve(DDS) 5.180 | Infiltration (/sf flr)
ELF Ach
.0007(.59) .00 .39
.0005(.42)31 .19
.0003(.25)51 .06 | Slope/.001ELF065
Curve/.001ELF .893
Base Load =
Typical Load =
Residual Load = | | | | Component
(KBtu) | (/sf)
4.17
1.56 | | e 69. | 49 | è. | | 406.28
68.642 | (/ft) | ~ 6 | 10 | 2.5 | 78.852
368.11
.034 | (/sf) | 3.83 | | നന | 2.
Ø95
67. | (/sf) | -13.46
-9.92
-6.50 | 1111.33
22.783 | | |-----------|----------|---------------------------|-----------------------|-------|-------------|--------------|-------|--------------|----------------------|----------|------|------------|--------------------|-----------------------------------|----------|------|-------------------------------|------------------|--------------------------------------|-----------|---|---------------------------|-------------------------------| | | | Delta Com
(MBtu) | | -1.42 | . o | 7. | Ö | | (SQQ) | sement | 99. | | 35 | (00)
(00)
(00s) | | • | 1.57 | | cept
(DD) 1
(DDS) -1 | value | | e(DD) -1
e(DDS) | MBtu
MBtu
MBtu | | | ing Load | ŏ | Wall
R-0 | ٦, | R-13 | 2 | 1 | | Slope | eated Ba | * | 00 | -10 4ft
-10 8ft | Sign | - wer | 9 | 111 4 11 | -38 †!
-49 f! | Inter
Slope
Curve | /indow U- | 1-Pane
2-Pane
3-Pane
R-10 | Slope | 52.26 N
41.35 N
21.84 N | | | Cooling | ent
tu) | | 9 | <u>ار</u> د | : ' | .88 | .61 | 1.92
.98Ø | ft) H | 27 R | . 98 | er er | . 688
329 | /sf) C | .32 | 3.83 R
3.57 R | | . 747
6.85
. 758 | f f1r) W | 6.59
4.79
2.92 | . 833 | | | | | a Component
tu) (KBtu) | e i | 4.20 | .72 | 13 | . w | 4. |) 161.
S) 2 | > | 54 | .63
.63 | 60 | -32
-43
) | ement (/ | 60 | 1.055
1.295
1.45 | | 117
-169 | s/) u | . 90
. 2 . 16
. 4 . 40 | ELF 10
ELF - | Base
Typical
esidual | | eries Two | | Delts
(MBt | əiling
-Ø | -111 | -19 | - 30 | -38 | - 60 | lope (DD
urve (DD | lab | | ئو ئو | ه -ب
4 د | , 6 €
Ve (⊖
C) | ated Bas | | <u></u> | | Intercept
Slope(DD)
Curve(DDS) | | 7(.56)
5(.40) -
3(.25) - | 8/.001
8/.001 | . % | | ng Se | | | σœι | r œ | œ 0 | 202 | OZ 02 | z oz | ဖပ | S | 1 | 1 1 | R-10 | 91- | Unhea | R-6 | R-11
R-19
R-30 | | | Inf | . 6663
. 6663 | Slope | | | Sidi | | (KBtu) | (/sf)
1.12 | 4. E. | .21 | .12 | 60. | | 94.77
20.996 | (/ft) | 39 | -1.11 | -1.36 | -1.61
-2.018
32.99
.777 | (/sf) | .91 | 28
48
48 | .23 | .151
100.13
9.328 | (/sf) | 3.54
1.64
1.63 | 52.06 | | | Prototype | | lta Comp
MBtu) (|
60 | | . 43 | 4.4 | 4 | | (SQQ) | sement | | | 60 | cept
(00)
(00S) | | 80 | | 4.4 | | value | | (800)
(008) | MBtu
MBtu
MBtu | | Town | ig Load | ۵ | Wa
R-Ø | R-7 | R-13 | R-19
R-27 | R-34 | | Slope (Curve) | ated Bas | 100 | 5 4 ft | 10 4ft | 10 Sft
Inter
Slope
Curve | - ×e | 6 | -11 flr
-19 flr
-30 flr | | Inter
Slope
Curve | ndow U- | 1-Pane
2-Pane
3-Pane
R-10 | Slope | 3.02 M
.87 M
.13 M | | P. | leatin | | | | | | | | | Ĭ | 4 | ς α | 2 | <u>.</u> | ٦ | ۵ | ,
«««« | : 0≃ 0 | £ | Ir) Wi | | ოო | וווו
סיסיסי | | WYEC | I | Component
(KBtu) | (/sf)
1.90 | .63 | . 52 | . 20 | . 11 |
 | 198.23
20.501 | (/ft) | | | | 11
.000
-55.40 | //sf | 5 | 1.01 | | 004
-5.43
2.216 | 4- | .35 | 6. 80
80. 80
80. 80 | | | - | | Delta Com
(MBtu) | . 89.
51 | 76 | 06.1 | -1.02 | -1.07 | -1.08 | (00)
(008) | | .54 | . 55 | | ω | asement | | | • | (00)
(00) | ri on | | .001ELF
.001ELF | Base
Typical
Residual | | :-
F | | De. | o | ۲- | 77 | 20 | ו מיי | R-49
R-60 | Slope (I | Slab | | 2ft | 4†t
3 2ft | | | | | - | Intercept
Slope(DD)
Curve(DDS) | filtrat | ELF Ach
.0007(.59)
.0005(.42)
.0003(.25) | 10pe/.00 | | | X.
en: | | | - | | | _ | | | | | R-10 | R-5 | R-5
R-16 | R-10 | Unhe | . (| * 4 4 0 | 9 | | ľ | Де. 6.
1. 6. 6. 6. 6. 6. 6. 6. 6. 6. 6. 6. 6. 6. | ั้ง | | | | ooling Load | Delta Component
(MBtu) (KBtu) | _
_
_ | -0 4.6 | -18/ 1.9 | -13 -1.13 1.1 | -1.19 | -34 -1 | | Slope(DD) 601.95
Curve(DDS) 49.429 | + | | -5 4ft .22 77.8 | t .24 78.5
t .25 79.0 | -10 8ft .2
Intercept
Slope(DD) | 19:1- (600) | 5 | 11 flr - 10 3.5 | -30 flr35 2.9 | Intercept 2 Slope(DD) 822 | | 0.6- 00. ene | 2-Fane .32 -6.83
3-Pane .66 -4.48
R-10 1.05 -1.73 | 8 4 | 50.09 MBtu
39.80 MBtu
19.98 MBtu | |-----------------------------|--------------|----------------------------------|-------------|-------------------------|----------------|---------------|------------------------------|------------------------------|--------------|--|-----------------------|---------|--------------------------------|--------------------------|--|-------------------------|-----|---|---------------|--|----------------------|---|---|---|--| | ing Series Two | ŭ | Delta Component
(MBtu) (KBtu) | eiling (/st | -8 10.6
-7 -3 03 3 5 | -11 -4.55 2.4 | -19 -5.11 1.5 | -22 -5.27 1.2
-30 -5.48 c | R-38 -5.61 .71 | -60 -5.72 .5 | Slope(DD) 13ØØ.97
Curve(DDS) 66.722 | Slab (/ft) | - 00 6- | -5 2ft -2.06 | t - 2.08 | Intercept
Slope(DD) 34
Curve(DDS) -1 | ent (| 9.8 | 9 4 1 - 1 1 8 3 | -30 fir21 3.1 | Intercept 2.533
Slope(DD) 932.12
Curve(DDS) -143.636 | iltration (/sf flr) | (8
(8
(8)
(8) | (.25) -4.30 2.8 | Slope/.001ELF 9.646
Curve/.001ELF677 | Base Load = Typical Load = Residual Load = | | MApartment Prototype Siding | Heating Load | Delta Component
(MBtu) (KBtu) | Wall (/sf) | -722 .4 | -1125 .3 | -1328 .2 | -2731 .1 | -3432 .1 | | Slope(DD) 114.52
Curve(DDS) 17.083 | Heated Basement (/ft) | -053 | -5 4ft57 -1.2
-5 8ft57 -1.2 | t57 -1.2 | Intercept
Slope(DD)
Curve(DDS) | Crawl (/sf) | R-0 | 3 3 3 5 4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 | 138 flr 1.42 | Intercept
Slope(DD)
Curve(DDS) | Window U-value (/sf) | ne .00 3.4 | -Pan
-10 | Slope(DD) 48.99
Curve(DDS) 3.067 | 2.88 MBtu
.82 MBtu
.16 MBtu | | Miami FL WYEC | | | iling
Ø. | -782 .6 | 4. 96 11. of - | -22 -1.10 .2 | -30 -1.14 | -38 -1.16 .1
-49 -1.18 .1 | -60 -1.19 .0 | 으늘 | Slab (/ft) | -653 .0 | 27t630
4ft530 | -10 2ft530
-10 4ft530 | Intercept .000
Slope(DD) -36.89
Curve(DDS) 4.487 | Unheated Basement (/sf) | 530 | R-19 f.lr5462
R-30 f.lr5462 | | Intercept000
Slope(DD) -17.59
Curve(DDS) 3.299 | _ | . 0007 (.59) . 00 . 31
. 0005 (.42)21 . 14 | (.25)33 | Slope/.001ELF146
Curve/.001ELF .833 | Base Load =
Typical Load =
Residual Load = | | | • | omponent
(KBtu) | (/sf)
17 2.31
17 1.27
34 1.12
62 .87
76 .56
10 .44 | 580.36
-27.913
(/ft) | 5.08
1.59
1.59
1.59
37.95
2.199 | (/sf) | 20 20.72 8 30.372 8 30.372 8 30.48 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 | (/sf)
0 1.74
7 .82
3 .52
9 .17 | 72.65 | | |------------------------|------------|----------------------------------|--|---|--|-------------------------|---|--|--|--| | - | : | Delta Co
(MBtu) | Wall R-0 R-7 -1.1 R-11 -1.3 R-13 -1.7 R-27 -1.7 R-34 -2.1 | Slope(DD)
Curve(DDS)
Heated Basement | R-0
R-5 4ft -3.98
R-5 8ft -3.99
R-10 4ft -4.09
R-10 8ft -4.00
Slope(DD)
Curve(DDS) | Crawl | R-0
R-11 flr 1.00
R-19 flr 1.18
R-30 flr 1.31
R-38 flr 1.34
R-49 flr 1.43
Intercept Slope(DD)
Curve(DDS) | Window U-value 1-Pane 2-Pane1 3-Pane2 R-10 | Slope(DD)
Curve(DDS) | 15.99 MBtu
3.86 MBtu
-3.20 MBtu | | ding Series Two | • | Delta Component
(MBtu) (KBtu) | Ceiling (/sf) R-0 .00 4.38 R-1 -3.96 1.81 R-11 -4.59 1.40 R-19 -5.16 1.03 R-2 -5.42 .88 R-38 -5.72 .67 R-38 -6.09 .42 R-49 -6.09 .42 | Slope(DD) 978.14
Curve(DDS) -40.346
Slab (/ft) | R-0 -4.80 -3.71 R-5 2ft -4.66 -2.87 R-5 4ft -4.56 -2.26 R-10 2ft -4.63 -2.69 R-10 4ft -4.48 -1.78 Intercept .318 Slope(DD) -718.93 Curve(DDS) 32.049 | Unheated Basement (/sf) | R-11 flr -1.00 2.07
R-19 flr -37 2.47
R-30 flr .03 2.74
Intercept 3.435
Slope(DD) -946.84
Curve(DDS) 74.856 | Infiltration (/sf flr)
ELF Ach
.0007(.61) .00 .73
.0005(.44)37 .49
.0003(.26)70 .27 | Slope/.001ELF .812
Curve/.001ELF .325 | Base Load =
Typical Load =
Residual Load = | | One Story Prototype Si | ating Load | Velta Component
(MBtu) (KBtu) |
Wall
R-0
R-7
R-11
R-11
R-13
R-13
R-13
R-13
R-13
R-27
R-39
R-39
R-34
R-39
R-34
R-39
R-34
R-39
R-34
R-36
R-34
R-36
R-36
R-36
R-36
R-36
R-36
R-36
R-36
R-36
R-36
R-36
R-36
R-36
R-36
R-36
R-36
R-36
R-36
R-36
R-36
R-36
R-36
R-36
R-36
R-36
R-36
R-36
R-36
R-36
R-36
R-36
R-36
R-36
R-36
R-36
R-36
R-36
R-36
R-36
R-36
R-36
R-36
R-36
R-36
R-36
R-36
R-36
R-36
R-36
R-36
R-36
R-36
R-36
R-36
R-36
R-36
R-36
R-36
R-36
R-36
R-36
R-36
R-36
R-36
R-36
R-36
R-36
R-36
R-36
R-36
R-36
R-36
R-36
R-36
R-36
R-36
R-36
R-36
R-36
R-36
R-36
R-36
R-36
R-36
R-36
R-36
R-36
R-36
R-36
R-36
R-36
R-36
R-36
R-36
R-36
R-36
R-36
R-36
R-36
R-36
R-36
R-36
R-36
R-36
R-36
R-36
R-36
R-36
R-36
R-36
R-36
R-36
R-36
R-36
R-36
R-36
R-36
R-36
R-36
R-36
R-36
R-36
R-36
R-36
R-36
R-36
R-36
R-36
R-36
R-36
R-36
R-36
R-36
R-36
R-36
R-36
R-36
R-36
R-36
R-36
R-36
R-36
R-36
R-36
R-36
R-36
R-36
R-36
R-36
R-36
R-36
R-36
R-36
R-36
R-36
R-36
R-36
R-36
R-36
R-36
R-36
R-36
R-36
R-36
R-36
R-36
R-36
R-36
R-36
R-36
R-36
R-36
R-36
R-36
R-36
R-36
R-36
R-36
R-36
R-36
R-36
R-36
R-36
R-36
R-36
R-36
R-36
R-36
R-36
R-36
R-36
R-36
R-36
R-36
R-36
R-36
R-36
R-36
R-36
R-36
R-36
R-36
R-36
R-36
R-36
R-36
R-36
R-36
R-36
R-36
R-36
R-36
R-36
R-36
R-36
R-36
R-36
R-36
R-36
R-36
R-36
R-36
R-36
R-36
R-36
R-36
R-36
R-36
R-36
R-36
R-36
R-36
R-36
R-36
R-36
R-36
R-36
R-36
R-36
R-36
R-36
R-36
R-36
R-36
R-36
R-36
R-36
R-36
R-36
R-36
R-36
R-36
R-36
R-36
R-36
R-36
R-36
R-36
R-36
R-36
R-36
R-36
R-36
R-36
R-36
R-36
R-36
R-36
R-36
R-36
R-36
R-36
R-36
R-36
R-36
R-36
R-36
R-36
R-36
R-36
R-36
R-36
R-36
R-36
R-36
R-36
R-36
R-36
R-36
R-36
R-36
R-36
R-36
R-36
R-36
R-36
R-36
R-36
R-36
R-36
R-36
R-36
R-36
R-36
R-36
R-36
R-36
R-36
R-36
R-36
R-36
R-36
R-36
R-36
R-36
R-36
R-36
R-36
R-36
R- | Slope(DD) 8655.96
Curve(DDS) -170.145
Heated Basement (/ft) | R-Ø -15.41 135.73 R-5 4ft -22.70 91.81 R-5 8ft -25.32 78.03 R-10 4ft -24.64 80.13 R-10 8ft -28.74 55.43 Intercept .000 Slope(DD) 5800.95 Curve(DDS) -60.331 | Crawl (/sf) | R-0
'R-11 flr -38.96 .64
R-19 flr -43.43 -3.56
R-30 flr -47.62 -6.29
R-49 flr -51.34 -8.70
Intercept -12.783
Slope(DD) 8430.60
Curve(DDS) -221.029 |) Window U-value (/sf)
1-Pane .00 200.73
2-Pane -19.17 97.00
3-Pane -25.68 61.79
R-10 -33.33 20.37 | Slope(DD) 8765.87
Curve(DDS) -44.031 | = 228.00 MBtu
= 81.21 MBtu
= 11.24 MBtu | | Minneapolis MN WYEC | : | Delta Component
(MBtu) (KBtu) | Ceiling (/sf) R-0 | Slope(DD) 8972.33
Curve(DDS) -268.763
Slab (/ft) | R-Ø -26.96 66.15
R-5 2ft -34.00 23.74
R-5 4ft -36.07 11.27
R-10 2ft -35.31 15.85
R-10 4ft -38.23 -1.74
Intercept -38.713
Slope(DD) 11467.25
Curve(DDS) -203.604 | Unheated Basement (/sf) | R-015.41 14.63 R-11 flr -35.88 1.34 R-19 flr -41.72 -2.46 R-30 flr -45.48 -4.90 Intercept -11.483 Slope(DD) 8966.55 Curve(DDS) -755.517 | Infiltration (/sf flr)
ELF Ach
.0007(.88) .00 26.97
.0005(.63)-11.98 19.19
.0003(.39)-23.87 11.47 | Slope/.001ELF 38.020
Curve/.001ELF .730 | Base Load = Typical Load = Residual Load = | | | Cooling Load | Delta Component
(MBtu) (KBtu) | | -0 .00 2.2 | -749 1.2 | R-1156 1.08
R-13 60 01 | -1975 .6 | -2782 .5 | 4. 18 46- | | Slope(DD) 644.73
Curve(DDS) -23.255 | eated Basement (/ | | -5 4ft -1.44 .2 | -5 8ft -1.43 .5 | -10 4ft -1.462 | Intercept
Slope(DD) -5 | (503)
(7st | | fir .50 2.4 | 63 3.4
71 3.6 | fir .73 3.6 | Tir .78 3.7 | pe (DD) -487 | 22:00 (000)0:00 uopu | -Pana and - | -Pane .049 | 3-Pane .0961
R-10 .1424 | Slope(DD) -106.00
Curve(DDS) 2.280 | | |------------------------|--------------|----------------------------------|------------|-------------------------------|---------------------------|---------------------------|------------------|----------------|----------------|-----------|--|-----------------------|-----------------|--|---------------------|---------------------|---|-------------------------|---------------|--------------------|--|---------------------|----------------|--|-----------------------------------|-----------------|--|----------------------------|---|--| | ing Series Two | °°) | Delta Component
(MBtu) (KBtu) | /) Builing | 4 66. | -/ -1.49 1
-11 -1.72 1 | -19 -1.94 | -22 -2.03 | -36 -2.14 | R-49 -2.28 .39 | -60 -2.32 | Slope(DD) 900.75
Curve(DDS) -32.816 | Slab (/ft) H | -6 -1:91 -11 49 | -5 2ft -1.82 -9.24 | 4ft -1.77 -7.9 | -10 4ft -1.74 -7.24 | Intercept -3.642
Slope(DD) -1191.04
Curve(DDS) 44.104 | ed Basement (/sf) C | | 11 flr44 1.68 R | -19 flr16 2.15 R
-30 flr .02 2.45 R | ok o | ept 3.278 | Slope(DD) -1135.55
Curve(DDS) 106.307 | tration (/sf | . 88 | 40 | . 98 (93. | Slope/.001ELF 1.208
Curve/.001ELF417 | Base Load =
Typical Load =
Residual Load = | | Mid Town Prototype Sid | eating Load | Delta Component
(MBtu) (KBtu) | 1] (/sf | -6 .00 41.2
-7 -10 18 19 9 | -11 -11.63 16.8 | 3 -13 | -19 - 14.20 11.4 | -34 -16.67 6.2 | | | Slope(DD) 8103.33
Curve(DDS) -81.751 | Heated Basement (/ft) | -0 -9.18 171 | -5 4ft -11.78 106 | 4ft -12.41 90 | -10 8ft -13.54 62 | rcept
e(DD) 633
e(DDS) -51 | Crawl (/sf) | - 30 AB | -11 flr -13.73 3.8 | R-30 flr -17.65 -2.70
R-38 flr -19 an -2.20 | -49 fir -19.00 -4.9 | ntercept -8.81 | (DD) 7911.4
(DDS) -191.56 | Window U-value (/sf) | -Pane .00 188.7 | 2-rane -14.63 87.12
3-Pane -19.99 RE 97 | -10 -24.61 17.8 | Slope(DD) 7617.25
Curve(DDS) -17.756 | 111.71 MBtu
37.35 MBtu
2.13 MBtu | | Minneapolis MN WYEC | | Delta Component
(MBtu) (KBtu) | iling (/sf | -7 -16.78 17.9 | -11 -19.45 13.4 | -19 -21.86 9.4 | -26 -23.91 6.0 | -38 -24.62 4.8 | 1 1 | | Slope(DD) 8771.15
Curve(DDS) -173.100 | Slab (/ft) | -13.16 71.8 | -5 21t -14.92 27.8
-5 4ft -15 40 15 2 | -10 2ft -15.24 19.8 | -10 4ft -15.93 2.5 | rcept -33.
B(DD) 10890
B(DDS) -153. | Unheated Basement (/sf) | -0 -9.18 11.4 | 2 | -30 fir -17.13 -1.8 | | ntercept -7.07 | Curve(DDS) -705.891 | Infiltration (/sf flr)
ELF Ach | (.90) .00 25.3 | $(.38)^{-3}$ | | Slope/.001ELF 33.542
Curve/.001ELF 3.750 | Base Load =
Typical Load =
Residual Load = | | | Component
(KBtu) | \$\$\)1 . 9\$
. 98
. 98
. 81
. 88
. 49
. 88
. 11 | 373.93
-1.130
(/ft) | 18. 1112 | (/sf)
2.03
2.76
2.95
3.03
3.05
3.10
3.288
-340.96 | (/sf)
-1.54
-1.58
-1.05 | 194.66
5.163 | |--|----------------------------------|--|--|---|--|---|---| | Cooling Load | Delta Co
(MBtu) | Wall
R-0
R-7
R-1132
R-1344
R-1944
R-2753 | Slope(DD)
Curve(DDS)
Heated Basement | R-0
R-5 4ft -1.15
R-5 8ft -1.18
R-10 4ft -1.19
R-10 8ft -1.19
Intercept -1.19
Slope(DD) | Craw! R-0 R-11 flr .44 R-19 flr .65 R-38 flr .61 R-49 flr .61 Slope(DD) . | Window U-value
1-Pane .00
2-Pane .00
3-Pane .07
R-10 .16 | Slope(DD)
Curve(DDS)
9.61 MBtu
5.68 MBtu
2.12 MBtu | | os T∗o | Delta Component
(MBtu) (KBtu) | Ceiling (/sf) R-Ø 3.99 R-7 -1.41 1.64 R-11 -1.64 1.26 R-22 -1.93 .77 R-38 -2.06 .57 R-49 -2.17 .38 R-6Ø -2.2Ø .34 | Slope(DD) 865.40
Curve(DDS) -32.341
Slab (/ft) | -1.38 -5.
-1.32 -3.
-1.32 -3.
-1.33 -3.
-1.28 -2.
ept .900) -1117. | Unheated Basement (/sf) R-0 R-11 fir38 1.40 R-19 fir16 1.77 R-30 fir02 2.00 Intercept 2.649 Slope(DD) -884.10 Curve(DDS) 81.319 | Infiltration (/sf flr)
ELF Ach
.0007(.61) .00 .32
.0005(.44)19 .17
.0003(.26)31 .06 | Slope/.001ELF .021
Curve/.001ELF .625
Base Load = Typical Load = Residual Load = | | MApartment Prototype Sid
ating Load | Delta Component
(MBtu) (KBtu) |
Wall
R-0
R-7
R-11
R-13
R-13
R-13
R-19
R-27
R-27
R-34
R-19
R-27
R-34
R-34
R-19
R-19
R-34
R-34
R-11
R-34
R-11
R-13
R-13
R-13
R-14
R-15
R-16
R-17
R-18
R-18
R-18
R-18
R-18
R-18
R-18
R-18 | Slope(DD) 7966.00
Curve(DDS) -36.595
Heated Basement (/ft) | -6 4ft -13.46 120.
-5 8ft -14.14 97.
-10 4ft -14.01 101.
-10 8ft -14.97 69.
Intercept .0
Slope(DD) 7037.
Curve(DDS) -52.4 | Crawl (/sf) R-0 .00 28.44 R-13 flr -13.97 5.15 R-30 flr -16.41 1.09 R-38 flr -17.97 -1.60 R-38 flr -19.34 -3.79 Intercept -7.716 Slope(DD) 8049.60 Curve(DDS) -194.597 | Window U-value (/sf) 1-Pane .00 189.87 2-Pane -14.87 86.61 3-Pane -19.44 54.89 R-10 -24.81 17.58 | Slope(DD) 7503.59
Curve(DDS) -11.794
: 105.72 MBtu
: 34.53 MBtu | | Minneapolis MN WYEC | Delta Component
(MBtu) (KBtu) | Ceiling (/sf) R-0 .00 44.84 R-7 -16.42 17.46 R-11 -19.04 13.09 R-19 -21.40 9.17 R-22 -22.25 7.75 R-30 -23.40 5.84 R-38 -24.67 3.72 R-49 -24.67 3.72 R-60 -25.05 3.09 | Slope(DD) 8455.97
Curve(DDS) -150.713
Slab (/ft) | 2ft -15.74 44.00
4ft -16.15 30.5
2 2ft -16.00 35.5
0 4ft -16.66 16.8
Intercept -22.24
Slope(DD) 12079.00
Curve(DDS) -203.08 | Unheated Basement (/sf) R-0 R-11.12 9.91 R-11 flr -15.13 3.23 R-19 flr -16.6766 R-30 flr -17.6699 Intercept -5.646 Slope(DD) 6441.08 Curve(DDS) -664.479 | Infiltration (/sf flr)
ELF Ach
.0007(.90) .00 25.12
.0005(.64) -9.13 17.52
.0003(.38)-17.84 10.25 | Slope/.001ELF 32.895
Curve/.001ELF 4.272
Base Load = Typical Load = Residual Load = | | | Cooling Load | Delta Component
(MBtu) (KBtu) | Wall R-0 R-0 R-0 -000 4.17 R-7 -2.30 2.12 R-11 -2.63 1.83 R-13 -3.06 1.44 R-19 -3.27 1.26 R-27 -3.66 .91 R-34 -3.90 .70 | Slope(DD) 916.92
Curve(DDS) -26.462
Heated Basement (/ft) | | Craw! (/sf) | R-0 3.86
R-11 flr 1.18 4.62
R-19 flr 1.28 4.69
R-30 flr 1.39 4.76
R-38 flr 1.41 4.77
R-49 flr 1.48 4.82
Intercept 4.861
Slope(DD) -123.07
Curve(DDS) -14.120 | Window U-value (/sf)
1-Pane .00 2.51
2-Pane28 .99
3-Pane35 .62
R-1043 .18 | Slope(DD) 76.17
Curve(DDS) .716
34.35 MBtu
14.09 MBtu
30 MBtu | |-------------------------|--------------|----------------------------------|---|--|--|-------------------------|--|--|---| | ding Series Two | ŭ | Delta Component
(MBtu) (KBtu) | Ceiling (/sf) R-0 .00 8.25 R-7 -7.60 3.32 R-11 -8.81 2.53 R-19 -9.90 1.82 R-22 -10.33 1.54 R-38 -11.24 1.55 R-49 -11.56 .75 R-60 -11.76 .61 | Slope(DD) 1707.97
Curve(DDS) -53.389
Slab (/ft) | R-0 -6.89 -5.71 R-5 2ft -6.87 -5.59 R-6 4ft -6.87 -4.38 R-10 2ft -6.85 -5.47 R-10 4ft -6.60 -3.96 Intercept .0000 Slope(DD) -1202.22 Curve(DDS) 58.852 | Unheated Basement (/sf) | R-0
R-11 flr83 3.32
R-19 flr17 3.75
R-30 flr26 4.03
Intercept 4.755
Slope(DD) -979.40
Curve(DDS) 69.992 | Infiltration (/sf flr)
ELF Ach
.0007(.41) .00 1.95
.0005(.29)86 1.40
.0003(.18) -1.72 .84 | Slope/.001ELF 2.792
Curve/.001ELF000
Base Load =
Typical Load =
Residual Load = | | One Story Prototype Sid | eating Load | Delta Component
(MBtu) (KBtu) | Wall (/sf) R-0 .000 18.67 R-7 -10.63 9.22 R-11 -12.14 7.87 R-13 -14.03 6.19 R-19 -14.96 5.36 R-27 -16.63 3.87 R-34 -17.66 2.96 | Slope(DD) 3861.13
Curve(DDS) -72.401
Heated Basement (/ft) | R-Ø -8.27 79.81 R-5 4ft -12.14 56.50 R-5 8ft -13.63 47.52 R-10 4ft -13.13 50.53 R-10 8ft -15.40 36.86 Intercept 7.685 Slope(DD) 2772.52 Curve(DDS) -25.374 | Crawl (/sf) | R-0
R-11 flr -17.66 2.51
R-19 flr -20.62 .58
R-38 flr -22.8459
R-49 flr -22.8486
R-49 flr -24.03 -1.63
Intercept -3.429
Slope(DD) 3636.99
Curve(DDS) -47.453 | Window U-value (/sf) 1-Pane .00 88.77 2-Pane -8.60 42.23 3-Pane -11.44 26.87 R-10 -14.78 8.79 | Slope(DD) 3775.14
Curve(DDS) -15.629
100.98 MBtu
43.32 MBtu
.86 MBtu | | Nashville TN WYEC | He | Delta Component
(MBtu) (KBtu) | Ceiling (/sf) R-0 .00 20.05 R-7 -18.48 8.05 R-11 -21.43 6.14 R-19 -24.08 4.41 R-30 -26.51 2.84 R-38 -27.35 2.29 R-49 -28.10 1.81 R-60 -28.58 1.49 | Slope(DD) 4135.22
Curve(DDS) -127.039
Slab (/ft) | R-Ø
R-S 2ft -16.17 32.22
R-5 4ft -17.38 24.93
R-1Ø 2ft -16.79 28.49
R-1Ø 4ft -18.39 18.85
Intercept .000
Slope(DD) 4953.52
Curve(DDS) -58.774 | nheated Basement (/sf | R-0
R-11 flr -17.72 2.47
R-19 flr -20.25 .83
R-30 flr -21.8723
Intercept -3.042
Slope(DD) 3812.59
Curve(DDS) -300.656 | Infiltration (/sfflr)
ELF Ach
.0007(.75) .00 11.58
.0005(.56) -5.27 8.16
.0003(.33)-10.40 4.83 | Slope/.001ELF 15.747 Curve/.001ELF 1.136 Base Load = Typical Load = Residual Load = | | | | omponent
(KBtu) | (s + 6) (s + | 586.Ø1
11.957
(/ft) | 22 22 25 25 25 25 25 25 25 25 25 25 25 2 | (/sf) | 4 . 02
6 . 15
6 . 15
7 . 24
7 . 23
1 . 24
8 . 33
3 . 84
8 . 84 | (/sf)
-6.17
-5.68
-3.76
-1.51 | -683.3 <i>0</i>
17.036 | |-----------|--------------|---------------------|---|----------------------------
--|-----------|---|---|--| | | 70 | Delta Co
(MBtu) | - 1 | e(DD)
e(DDS)
asement | -1.25
-1.38
-1.39
-1.42
-1.46
-(DD)
•(DD) | | .00
.58
.68
.74
.75
.75
.75
.79
.79 | -value
-000.
-007.
-007.
-007. | e(DD)
e(DDS)
MBtu
MBtu
MBtu | | | Cooling Load | | X X X X X X X X X X X X X X X X X X X | Slop
Curv
Heated B | | Crawl | R-6
R-11
R-130
R-300
R-300
R-300
R-17
R-17
R-17
R-17
R-17
R-17
R-17
R-17 | Window U.
1-Pan
2-Pan
3-Pan
R-10 | Slope
Curve
22.91
14.90
6.75 | | | Coo | Component
(KBtu) | 7.90
7.90
3.02
2.25
1.55
1.29
73
.73 | 396.7Ø
1Ø.921
(/ft) | 9.6.5.68.7 | S | 1.93
3.82
4.23
4.50
5.184
5.184
54.481 | (sf flr)
1.79
1.29
.78 | 2.625
104
e Load =
 Load =
 Load = | | Two | | Delta Com
(MBtu) | 00
-2.92
-3.39
-3.39
-4.17
-4.30
-4.30 | (00) 13
(008) - | -2.61
-2.56
-2.53
-2.51
-2.51
(00)
(D0) | Ē | 1 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 | tion (/
00
)60
) -1.21 | ELF
ELF
Bas
Typica
esidua | | Series | | ۵ | 7 | Slope
Curve
Slab | 2ft
8 2ft
8 2ft
8 4ft
Slope
Curve | nheated | R-0
R-11 flr -1
R-19 flr -1
R-3Ø flr Slope(DD)
Slope(DD) | Infiltrat
ELF Ach
0007(.44)
0005(.31)
0003(.19) | Slope/.0011
Curve/.0011 | | Siding | | ent
itu) | sf)
.69
.26
.61
.46 | 13
578
ft) | 992
992
117
7 5 5 5 5 7 5 6 7 6 7 6 7 6 7 6 7 6 7 6 | _ | | sf)
.65
.91 | . 60
505
505 | | rototype | | E (KB | ()
18
179
18
179
18
179
18
18
18
18
18
18
18
18
18
18
18
18
18 | 3358
23. | 69 81
37 39
37 39
76 42
76 30
2202
-9. | > | 66 13
46 2
49 2
67 -
28 -1
58 -1
2996: | (/
60 77
61 31
33 19 | 25Ø5
16. | | Prote | 70 | Deita Co
(MBtu) | 470000 | e(DD)
e(DDS)
asement | -6.5.6
-6.5.6
-6.00
-6.00
-6.00
-6.00
-6.00
-6.00
-6.00
-6.00
-6.00
-6.00
-6.00
-6.00
-6.00
-6.00
-6.00
-6.00
-6.00
-6.00
-6.00
-6.00
-6.00
-6.00
-6.00
-6.00
-6.00
-6.00
-6.00
-6.00
-6.00
-6.00
-6.00
-6.00
-6.00
-6.00
-6.00
-6.00
-6.00
-6.00
-6.00
-6.00
-6.00
-6.00
-6.00
-6.00
-6.00
-6.00
-6.00
-6.00
-6.00
-6.00
-6.00
-6.00
-6.00
-6.00
-6.00
-6.00
-6.00
-6.00
-6.00
-6.00
-6.00
-6.00
-6.00
-6.00
-6.00
-6.00
-6.00
-6.00
-6.00
-6.00
-6.00
-6.00
-6.00
-6.00
-6.00
-6.00
-6.00
-6.00
-6.00
-6.00
-6.00
-6.00
-6.00
-6.00
-6.00
-6.00
-6.00
-6.00
-6.00
-6.00
-6.00
-6.00
-6.00
-6.00
-6.00
-6.00
-6.00
-6.00
-6.00
-6.00
-6.00
-6.00
-6.00
-6.00
-6.00
-6.00
-6.00
-6.00
-6.00
-6.00
-6.00
-6.00
-6.00
-6.00
-6.00
-6.00
-6.00
-6.00
-6.00
-6.00
-6.00
-6.00
-6.00
-6.00
-6.00
-6.00
-6.00
-6.00
-6.00
-6.00
-6.00
-6.00
-6.00
-6.00
-6.00
-6.00
-6.00
-6.00
-6.00
-6.00
-6.00
-6.00
-6.00
-6.00
-6.00
-6.00
-6.00
-6.00
-6.00
-6.00
-6.00
-6.00
-6.00
-6.00
-6.00
-6.00
-6.00
-6.00
-6.00
-6.00
-6.00
-6.00
-6.00
-6.00
-6.00
-6.00
-6.00
-6.00
-6.00
-6.00
-6.00
-6.00
-6.00
-6.00
-6.00
-6.00
-6.00
-6.00
-6.00
-6.00
-6.00
-6.00
-6.00
-6.00
-6.00
-6.00
-6.00
-6.00
-6.00
-6.00
-6.00
-6.00
-6.00
-6.00
-6.00
-6.00
-6.00
-6.00
-6.00
-6.00
-6.00
-6.00
-6.00
-6.00
-6.00
-6.00
-6.00
-6.00
-6.00
-6.00
-6.00
-6.00
-6.00
-6.00
-6.00
-6.00
-6.00
-6.00
-6.00
-6.00
-6.00
-6.00
-6.00
-6.00
-6.00
-6.00
-6.00
-6.00
-6.00
-6.00
-6.00
-6.00
-6.00
-6.00
-6.00
-6.00
-6.00
-6.00
-6.00
-6.00
-6.00
-6.00
-6.00
-6.00
-6.00
-6.00
-6.00
-6.00
-6.00
-6.00
-6.00
-6.00
-6.00
-6.00
-6.00
-6.00
-6.00
-6.00
-6.00
-6.00
-6.00
-6.00
-6.00
-6.00
-6.00
-6.00
-6.00
-6.00
-6.00
-6.00
-6.00
-6.00
-6.00
-6.00
-6.00
-6.00
-6.00
-6.00
-6.00
-6.00
-6.00
-6.00
-6.00
-6.00
-6.00
-6.00
-6.00
-6.00
-6.00
-6.00
-6.00
-6.00
-6.00
-6.00
-6.00
-6.00
-6.00
-6.00
-6.00
-6.00
-6.00
-6.00
-6.00
-6.00
-6.00
-6.00
-6.00
-6.00
-6.00
-6.00
-6.00
-6.00
-6.00
-6.00
-6.00
-6.00
-6.00
-6.00
-6.00
-6.00
-6.00
-6.00
-6.00
-6.00
-6.00
-6.00
-6.00
-6.00
-6.00
-6.00
-6.00
-6.00
-6.00
-6.00
-6.00
-6.00
-6.00
-6.00
-6.0 | | -6.1
-7.1
-7.1
-8.6
-8.6
-8.6
-8.6
-8.6
-8.6
-8.6
-8.6 | value
-6. | e(DD)
e(DDS)
MBtu
MBtu
MBtu | | d Town | ing Load | | Wall
R-0
R-11
R-11
R-13
R-27
R-27 | Slope
Curve | . C - c - c - c - c - c - c - c - c - c - |
¥ & L | | indow U
1-Pan
2-Pan
3-Pan
R-10 | Slope
Curve
48.31 h
21.35 h | | ž | Heat | ent
tu) | sf)
31
32
33
37
37
37
37
37
37
37 | 21
78
t) H | ααααα (| τ)
C | 746
746
746
746
746
746
746
746
746
746 | flr) W
63
73
78 | 33
71
and III | | WYEC | | ompon
(KB | 20
20
20
20
20
20
20
20
20
20
20
20
20
2 | 4008.
-52.8
(/f | 300 100 100 100 100 100 100 100 100 100 | ant (/s | 69 5.
91 1.
59 .
63 | (/sf
36 10.
35 6. | Hase Lo | | Z
Z | | Delta Co
(MBtu) | | (00)
(008) | -6
-7
-7
-7
-7
-7
-7
-7
-9
(00) | Ваѕешел | fir -4.6
9 fir -7.E
7 fir -8.2
1 Intercept Slope (DD)
Curve (DDS) | ation
h
8) .0
8) -3.9
5) -7.4 | .001ELF
.001ELF
Typi | | Nashville | | _ | C | Slope
Curve | 25
25
3 25
10 5
0 10 5
0 10 6 | Unheated | R-0
R-11 flr
R-19 flr
R-30 flr
Inte | Infiltra
ELF Ach
.0007(.78)
.0005(.56)
.0003(.35) | Slope/.i | | | Cooling Load | Delta Component
(MBtu) (KBtu) | /sf
/sf | -757 1.4 | -1165 | -13 - 76 .8 | -2786 .5 | -3489 .4 | | Slope(DD) 481.82
Curve(DDS) 21.707 | Heated Basement (/ft) | | -1.04 24 | -5 8ft -1.16 20 | -16
4ft -1.18 20 | Intercept 18
Slope(DD) 10'
Curve(DDS) 1 | | | R-11 flr .75 4.22
R-30 flr .84 4.37
R-38 flr .88 4.42
R-38 flr .88 | 149 fir .90 4.4
Intercept 4.56 | urve(DDS) -154.6
urve(DDS) -30.76 | Window U-value (/sf) | 600 | -rane .28 -3.0
-10 .52 -1.2 | Slope(DD) -565.59
Curve(DDS) 14.449 | 20.94 MBtu
13.93 MBtu
6.43 MBtu | |--------------------------|--------------|----------------------------------|------------|-------------------------------|--------------------------------|----------------|--------------------------------|------------------------|----------------|--|-----------------------|---|------------------|-------------------------------------|--------------------|---|-------------------------|--------------|---|------------------------------------|--------------------------------------|----------------------|---|--------------------------------|---|--| | ing Series Two | °S | Delta Component
(MBtu) (KBtu) | /st
/ | -7 -2.90 2.6 | -11 -3.36 1.8
-19 -3.78 1.1 | -22 -3.90 .9 | -30 -4.06 .6 | -36 -4.15
-49 -4.20 | -60 -4.23 .4 | Slope(DD) 969.53
Curve(DDS) 48.295 | Slab (/ft) | | 6 2ft -1.98 -6.5 | -5 4ft -1.95 -5.5 | -10 4ft -1.92 -4.5 | Intercept
Slope(DD) -14
Curve(DDS) 6 | nent (/sf) | 20 1 20 1 1 | 13 2.76
15 3.21
32 3.50 | Intercept 4.292 Slope(DD) -1075.99 | urve(DDS) 93.64 | iltration (/sf flr) | .0007(.41) .00 1.54
.0005(.29)59 1.05
.0003(.18) -1 13 64 | 0. 01.1 (01.1) | Slope/.001ELF 1.833
Curve/.001ELF .521 | Base Load = Typical Load = Residual Load = | | MApartment Prototype Sid | leating Load | Delta Component
(MBtu) (KBtu) | <i>•</i> | -7 -3.28 8.5 | -11 -3.75 7.6
-13 -4.26 5.4 | -19 -4.52 4.6 | -2/ -4.93 3.3
-34 -5 18 9 5 | 21.0 | | Slope(DD) 3205.89
Curve(DDS) 57.401 | Heated Basement (/ft) | (C) | 5 4ft -6.84 51 | -5 8ft -7.20 40
-10 4ft -7.10 43 | -10 8ft -7.57 27 | Intercept -3.565
Slope(DD) 2805.61
Curve(DDS) -13.972 | Craw! (/sf) | -0 .00 14. | 71 2 77 1 38 52 - | 49_f F | urve(DDS) 14.7 | Window U-value (/sf) | 1-Pane . ØØ 77.85
2-Pane -6.73 31.11
3-Pane -8.41 19.46 | -10 -10.38 5.7 | Slope(DD) 24Ø1.92
Curve(DDS) 2Ø.714 | 46.08 MBtu
19.94 MBtu
1.39 MBtu | | Nashville TN WYEC | Ŧ | Delta Component
(MBtu) (KBtu) | 0.0 | -/ -8.38 8.5
-11 -9.72 6.2 | -19 -10.92 4.2 | -22 -11.33 3.6 | -38 -12.21 2.1 | -49 -12.46 1.7 | -00 -12.02 1.4 | <u> </u> | Slab (/ft) | -6 -6 85 51 7 | ft -7.53 28.9 | -10 2ft -7.64 25.4 | -10 4ft -7.91 16.4 | Intercept .0000
Slope(DD) 4143.37
Curve(DDS) -10.063 | Unheated Basement (/sf) | -0 -5.68 4.5 | R-11 fir -7.48 1.53
R-19 fir -8.09 .51
R-30 fir -8.4814 | | .urve(DDS) -238.26 | i Itra
Ach | .0007(.78) .00 9.72
.0005(.56) -3.94 6.43
.0003(.35) -7.40 3.55 | | Slope/.001ELF 10.312
Curve/.001ELF 5.104 | Base Load = Typical Load = Residual Load = | | | | omponent
(KBtu) | (/st) | 2.3 | 1.2 | -: ° | | . 57 | 4. | 8 | -28.932 | (/ft) | 5.79 | 2.77 | 2.53 | 1.93 | . 000 | 126.98 | (/8/) | | 2. c. | 3.16 | 3.27 | , .,, | 3.461
252.04 | œ. | (/sf) | • | O U |
. 4 | .11 | 44.82 |) | |-------------|-------------|--------------------|--------------------------------------|-------|------------|------------|-------|-------|-----------|--------------------|-------------|-----------|----------------|------------|-----------|---------|--------------|-----------------------|----------|------|----------|----------------------|----------------------|---------|---------------------------------------|------------|------------|------------|-------------|----------------|--------|------------------------|---| | | 70 | Delta Co
(MBtu) | | 6 | | ન +
ડ લ | 7. | -1.97 | 2.1 | (00) | (SQQ) | sement | | | | -3.45 | | (S00)
(00) | | | 20 | . –; (| 1.35 | .5 | cept
(DD) - | (sqq | alue | . ' | ø. | 17 | Ņ | (00)
(002) | ללל
ניני | | | ooling Load | _ | Wall | R-6 | <u> </u> | 7 | ٠. | R-27 | ń | Slope | Curve | Heated Ba | 6 | -5 4ft | -5 8ft | 10 8ft | Inter | | Crawl | Ö | -11 fl | -19 41 | R-38 flr | -49 fir | Slope (| 9.10 | Window U-v | ć | - Pag- | 3-Pane | 7 | Slope (I | 17.02 MB4
5.78 MB4
-2.39 MB4 | | | O | omponent
(KBtu) | (/sf | 4. | 7.7 | . 6 | ω. | φı |
4 2 4 | 974.0 | . 4 . | (/ft) | . ი | œ c | ש מ | -1.62 | .85 | -/93.08
36.670 | t (/sf) | Œ | i ø | 2.39 | • | č | 800.37 | 7.42 | (/sf fir) | ă | . 62 | .37 | | 1.234 | e Load = | | s Two | | Delta Co
(MBtu) | ing | 9 | . 4 | 6 | Ñ | ų, | - 5.95 | (00) | (600) | | 2 | -4.16 | . 4
 | 0 | cept
2007 | (00)
(00s) | Basement | 7 | 55 | 01 | | + | | (500) | ion | 6 | - 38 | 7 | | IØ1ELF
IØ1ELF | Base
Typical
Residual | | Series | | | - e o | 3 C | 7 | 7 | ç | in c | R-49 | 9 | • .
5 . | Slab | 6 | ף ול
מו | -10 2f | -10 4ft | ter | 9
0
0
0
0 | Unheated | R-0 | -11 fl | K-19 flr
R-30 flr | | 4 | Slope | 9
/ L D | tra | ELF ACH | ٣ | <u>ښ</u> | | Slope/.00
Curve/.00 | | | type Siding | | omponent
(KBtu) | 25 | 13.4 | 11.4 | 0 |
 | 9 6 | †
! | 56Ø1.43
-87.Ø37 | 197 | (/1t) | 88.78 | 2 4 | 5 | 35 | | 34. | (/sf) | | | | | 7.6 | 5371.10
-90 041 | ; | (/sť) | о
О | ω· | 40.57
13.05 | | 577.95
11.73ø | | | / Prototype | a d | Deita C
(MBtu) | Š | 5.8 | -18.1 | -20.8 | 2.22- | -26.2 | | e (DD)
e (DDS) | | n | -12.19 | -18.7 | -18.3 | -20.9 | (00)
(00) | • (pp2) | | 0 | m u | ი ი | -32.97 | cept. | (60)
(603) | | 9016 | 9. | -13.8 | -23.29 | | (00)
(000) | ABtu
ABtu
Abtu | | One Story | Heating Lo | | ¥a
1.63-19 | | 7 | 7. | 7 9 | R-34 | | Slop | T 0 + 0 0 H | | R-6
R-5 4ft | -5 8f | -10 4f | -16 g | Slope | y LO | Crawl | -0 | -11 f1 | -30 FI | R-38 f-r
R-49 f-r | Int | Slope | | | -Pan | e (| R-10 | | Curve | 150.95 MI
49.25 MI
4.24 MI | | WYEC | Ι | omponent
(KBtu) | (/sf)
29.52 | 11.7 | ω α
σ α | יי
טע | . 4 | 3.5 | 2.5 | 5917.73
158.266 | (/ft) | | 46.8Ø
19.63 | 8. | 4.
Ri. | 18 | 446.4 | 8 | : (/sf) | 9.57 | | -2.74 | | | 5486.27
448.327 | | - | 7 | 12.83 | | 6 | 1.137 | Load III | | Σ
Σ | | Delta (
(MBtu) | gu÷ | -27.3 | -31.7 | 137.0 | -39.1 | -40.4 | -41.48 | •(DD)
•(DDS) - | | • | -19.16 | -24.9 | -24.5 | rcept | (00) | (DDS) | Basement | 12. | . œ | 31.1 | | | orope(UU) 5
Curve(DDS) -4 | | : | Ø. | 9 F | • | u
ū | - L | Base
Typical
Residual | | New York | | • | - 69
- 69
- 69
- 69
- 69 | -1 | 77 | 10 | ၊က | 'n | | Slop | Slab | , | R-5 2ft | -5 4f | -10 21 | Inte | Ω | Curv | Unheated | 4 | R-19 flr | -3Ø f | | Inter | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | Infiltra | ELF Ach | (88) (88) | . 0003 (38 | | / 600 | Curve/.001 | | | | Cooling Load | Delta Component
(MBtu) (KBtu) | Wall (/sf) R-0 .00 1.93 R-745 1.99 R-1151 .86 R-1361 .65 R-2772 .41 R-3476 .33 | Slope(DD) 418.000
Curve(DDS) -11.076
Heated Basement (/ft) | -6 4ft -1.10 3.
-5 8ft -1.11 1.
-5 8ft -1.10 1.
-10 4ft -1.14 .
-10 8ft -1.14 .
Slope(DD) 20.
Curve(DDS) 1.8 | R-0 | Window U-value (/sf)
1-Pane .00 -2.26
2-Pane .04 -1.98
3-Pane .14 -1.31
R-10 .2552 | Slope(DD) -234.84
Curve(DDS) 5.657
11.75 MBtu
7.76 MBtu
2.92 MBtu | |-------------------------|--------------|----------------------------------|--|--
--|---|---|---| | ing Series Two | 000 | Delta Component
(MBtu) (KBtu) | Ceiling (/sf) R-0 3.73 R-7 -1.37 1.44 R-11 -1.59 1.07 R-19 -1.79 .74 R-22 -1.86 .63 R-38 -2.09 3.39 R-49 -2.05 3.30 R-60 -2.05 .24 | Slope(DD) 684.59
Curve(DDS) -9.481
Slab (/ft) | -1.62 -11.59
-1.56 -10.09
-1.50 -8.59
-1.54 -9.59
-1.48 -8.09
pt -4.334
D) -1167.66
DS) 46.832 | 1 flr -1.00 .26
9 flr -15 2.18
0 flr .35 2.51
Intercept 3.445
Slope(DD) -1289.79
Curve(DDS) 130.436 | Infiltration (/sf flr) W
ELF Ach
.0007(.70) .00 .90
.0005(.50)26 .69
.0003(.30)56 .44 | Slope/.001ELF 1.583
Curve/.001ELF417
Base Load =
Typical Load =
Residual Load = | | Mid Town Prototype Sidi | ating Load | Delta Component
(MBtu) (KBtu) | Wall (/sf) R-0 R-0 R-7 -6.82 12.89 R-11 -7.79 10.85 R-13 -8.91 R-19 -9.47 7.33 R-27 -10.46 5.26 R-34 -11.06 3.99 | Slope(DD) 5156.81
Curve(DDS) -18.457
Heated Basement (/ft) | R-0 -6.77 108.85 R-5 4ft -8.47 66.35 R-5 8ft -8.96 54.10 R-10 4ft -8.87 56.35 R-10 8ft -9.58 38.60 Intercept .000 Slope(DD) 3726.98 Curve(DDS) -26.237 Crawl | -0
-11 flr -9.43 2.8
-13 flr -10.99 .2
-30 flr -11.92 -1.3
-49 flr -12.13 -1.6
Intercept -5.09
Slope(DD) 4806.33
Curve(DDS) -38.46 | Window U-value (/sf) 1-Pane .00 126.72 2-Pane -10.51 53.73 3-Pane -13.38 33.82 R-10 -16.75 10.40 | Slope(DD) 4383.39
Curve(DDS) 15.776
72.95 MBtu
21.81 MBtu
.07 MBtu | | New York NY WYEC | Неа | Delta Component
(MBtu) (KBtu) | Ceiling (/sf) R-0 30.68 R-7 -11.27 11.89 R-11 -13.07 8.89 R-19 -14.69 6.19 R-30 -16.04 3.95 R-38 -16.50 3.18 R-49 -16.90 2.51 R-60 -17.16 2.08 | Slope(DD) 5697.80
Curve(DDS) -88.352
Slab (/ft) | R-0
R-5 2ft -10.29 20.85
R-5 4ft -10.59 13.35
R-10 2ft -10.49 15.85
R-10 4ft -10.90 5.60
Intercept -14.874
Slope(DD) 5743.60
Curve(DDS) -37.943 | fir -10.00 1. fir -11.08 1. fir -11.78 -1. Intercept -4.3 Slope(DD) 4420.1 | nfiltrati
LF Ach
007(.89)
005(.66)
003(.39)- | Slope/.001ELF 22.292
Curve/.001ELF 2.917
Base Load = Typical Load = Residual Load = | | | | ent
tu) | sf)
73
61
53
38 | 58
20
t) | 558
558
558
568
668
7 | 555
555
565
57
74
75
75 | .f.)
27
93
68
68 | 17
52 | |-------------|---------|-----------------------------|---|---|---
--|--|---| | | | ompone
(KBt |) ₁ | 387.
-12.3
(/f | 11.
1.
22.
22.
2.3 | 3 3.2
8 3.2
8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 | , 4 | 11.7 | | | _ | elta (
(MBt∪) | 0.2
0.2
0.0.0.0.0
0.0.0.0.0
0.0.0.0. | (DD)
(DDS)
sement | 98
-1.88
-1.83
-1.83
-1.63
(DD) | .00
.48
.48
.70
.74
.74
.74
.74
.00) | .000
.055
.24
.47 | (DD)
(DDS)
(Btu
(Btu | | | ng Load | ۵ | ************************************** | Slope
Curve | 6 4ft
5 4ft
10 4ft
10 8ft
10 8ft
Slope
Curve | 11 flr
19 flr
30 flr
38 flr
1 Inter
Slope
Curve | ndow U-1-Pane 2-Pane 3-Pane R-18 | Slope
Curve
10.60 M
7.01 M
2.67 M | | | Coolin | | | Ŧ | 4444 | ~~~~~~
 | .¥
i¥ | H H H | | | | omponent
(KBtu) | (/sf)
3.65
3.05
1.395
1.003
1.003
1.003
1.003
1.003
1.003
1.003
1.003
1.003
1.003
1.003
1.003
1.003
1.003
1.003
1.003
1.003
1.003
1.003
1.003
1.003
1.003
1.003
1.003
1.003
1.003
1.003
1.003
1.003
1.003
1.003
1.003
1.003
1.003
1.003
1.003
1.003
1.003
1.003
1.003
1.003
1.003
1.003
1.003
1.003
1.003
1.003
1.003
1.003
1.003
1.003
1.003
1.003
1.003
1.003
1.003
1.003
1.003
1.003
1.003
1.003
1.003
1.003
1.003
1.003
1.003
1.003
1.003
1.003
1.003
1.003
1.003
1.003
1.003
1.003
1.003
1.003
1.003
1.003
1.003
1.003
1.003
1.003
1.003
1.003
1.003
1.003
1.003
1.003
1.003
1.003
1.003
1.003
1.003
1.003
1.003
1.003
1.003
1.003
1.003
1.003
1.003
1.003
1.003
1.003
1.003
1.003
1.003
1.003
1.003
1.003
1.003
1.003
1.003
1.003
1.003
1.003
1.003
1.003
1.003
1.003
1.003
1.003
1.003
1.003
1.003
1.003
1.003
1.003
1.003
1.003
1.003
1.003
1.003
1.003
1.003
1.003
1.003
1.003
1.003
1.003
1.003
1.003
1.003
1.003
1.003
1.003
1.003
1.003
1.003
1.003
1.003
1.003
1.003
1.003
1.003
1.003
1.003
1.003
1.003
1.003
1.003
1.003
1.003
1.003
1.003
1.003
1.003
1.003
1.003
1.003
1.003
1.003
1.003
1.003
1.003
1.003
1.003
1.003
1.003
1.003
1.003
1.003
1.003
1.003
1.003
1.003
1.003
1.003
1.003
1.003
1.003
1.003
1.003
1.003
1.003
1.003
1.003
1.003
1.003
1.003
1.003
1.003
1.003
1.003
1.003
1.003
1.003
1.003
1.003
1.003
1.003
1.003
1.003
1.003
1.003
1.003
1.003
1.003
1.003
1.003
1.003
1.003
1.003
1.003
1.003
1.003
1.003
1.003
1.003
1.003
1.003
1.003
1.003
1.003
1.003
1.003
1.003
1.003
1.003
1.003
1.003
1.003
1.003
1.003
1.003
1.003
1.003
1.003
1.003
1.003
1.003
1.003
1.003
1.003
1.003
1.003
1.003
1.003
1.003
1.003
1.003
1.003
1.003
1.003
1.003
1.003
1.003
1.003
1.003
1.003
1.003
1.003
1.003
1.003
1.003
1.003
1.003
1.003
1.003
1.003
1.003
1.003
1.003
1.003
1.003
1.003
1.003
1.003
1.003
1.003
1.003
1.003
1.003
1.003
1.003
1.003
1.003
1.003
1.003
1.003
1.003
1.003
1.003
1.003
1.003
1.003
1.003
1.003
1.003
1.003
1.003
1.003
1.003
1.003
1.003
1.003
1.003
1.003
1.003
1.003
1.003
1.003
1.003
1.003
1.003
1.003
1.003
1.003
1.003
1.003
1.003
1.003
1.003
1.003
1.003
1.003
1. | 630.43
-2.619
(/ft) | -7.75
-6.25
-5.42
-6.08
-4.58
-1.346
1046.39
42.745
t (/sf) | 2.1
2.72
2.72
89.5223 | .84
.61
.37 | 1.271
104
104
 | | o* ⊢ | | elta Cor
(MBtu) | 19 .000
-1.35
-1.57
-1.76
-1.84
-1.94
-2.00 | (saa)
(aa) |
-1.28
-1.24
-1.23
-1.23
-1.19
-1.19
-1.00
-1.19
-1.19
-1.19
-1.19
-1.19
-1.19
-1.19
-1.19
-1.19
-1.19
-1.19
-1.19
-1.19
-1.19
-1.19
-1.19
-1.19
-1.19
-1.19
-1.19
-1.19
-1.19
-1.19
-1.19
-1.19
-1.19
-1.19
-1.19
-1.19
-1.19
-1.19
-1.19
-1.19
-1.19
-1.19
-1.19
-1.19
-1.19
-1.19
-1.19
-1.19
-1.19
-1.19
-1.19
-1.19
-1.19
-1.19
-1.19
-1.19
-1.19
-1.19
-1.19
-1.19
-1.19
-1.19
-1.19
-1.19
-1.19
-1.19
-1.19
-1.19
-1.19
-1.19
-1.19
-1.19
-1.19
-1.19
-1.19
-1.19
-1.19
-1.19
-1.19
-1.19
-1.19
-1.19
-1.19
-1.19
-1.19
-1.19
-1.19
-1.19
-1.19
-1.19
-1.19
-1.19
-1.19
-1.19
-1.19
-1.19
-1.19
-1.19
-1.19
-1.19
-1.19
-1.19
-1.19
-1.19
-1.19
-1.19
-1.19
-1.19
-1.19
-1.19
-1.19
-1.19
-1.19
-1.19
-1.19
-1.19
-1.19
-1.19
-1.19
-1.19
-1.19
-1.19
-1.19
-1.19
-1.19
-1.19
-1.19
-1.19
-1.19
-1.19
-1.19
-1.19
-1.19
-1.19
-1.19
-1.19
-1.19
-1.19
-1.19
-1.19
-1.19
-1.19
-1.19
-1.19
-1.19
-1.19
-1.19
-1.19
-1.19
-1.19
-1.19
-1.19
-1.19
-1.19
-1.19
-1.19
-1.19
-1.19
-1.19
-1.19
-1.19
-1.19
-1.19
-1.19
-1.19
-1.19
-1.19
-1.19
-1.19
-1.19
-1.19
-1.19
-1.19
-1.19
-1.19
-1.19
-1.19
-1.19
-1.19
-1.19
-1.19
-1.19
-1.19
-1.19
-1.19
-1.19
-1.19
-1.19
-1.19
-1.19
-1.19
-1.19
-1.19
-1.19
-1.19
-1.19
-1.19
-1.19
-1.19
-1.19
-1.19
-1.19
-1.19
-1.19
-1.19
-1.19
-1.19
-1.19
-1.19
-1.19
-1.19
-1.19
-1.19
-1.19
-1.19
-1.19
-1.19
-1.19
-1.19
-1.19
-1.19
-1.19
-1.19
-1.19
-1.19
-1.19
-1.19
-1.19
-1.19
-1.19
-1.10
-1.10
-1.10
-1.10
-1.10
-1.10
-1.10
-1.10
-1.10
-1.10
-1.10
-1.10
-1.10
-1.10
-1.10
-1.10
-1.10
-1.10
-1.10
-1.10
-1.10
-1.10
-1.10
-1.10
-1.10
-1.10
-1.10
-1.10
-1.10
-1.10
-1.10
-1.10
-1.10
-1.10
-1.10
-1.10
-1.10
-1.10
-1.10
-1.10
-1.10
-1.10
-1.10
-1.10
-1.10
-1.10
-1.10
-1.10
-1.10
-1.10
-1.10
-1.10
-1.10
-1.10
-1.10
-1.10
-1.10
-1.10
-1.10
-1.10
-1.10
-1.10
-1.10
-1.10
-1.10
-1.10
-1.10
-1.10
-1.10
-1.10
-1.10
-1.10
-1.10
-1.10
-1.10
-1.10
-1.10
-1.10
-1.10
-1.10
-1.10
-1.10
-1.10
-1.10
-1.10
-1.10
-1.10
-1.10
-1.10
-1.10
-1.10
-1.10
-1.10
-1.10
-1.10
-1.10
-1.10
-1.10
-1.10
-1.10
-1.10
-1.10
-1.10
-1.10
-1.10
-1.10
-1.10
-1.10
-1.10
-1.10
-1.10 | 90
21
.033
.17
.000) | | 1ELF
1ELF
Base
Typica
Residua | | Series | | ۵ | Ceili
R-6
11
R-11
R-12
R-22
R-38
R-49
R-49 | Slope
Curve
Slab | 2ft
4ft
2ft
2ft
Inter
Slope
Curve | 1 fir
9 fir
Ø fir
Interc
Slope(
Curve(| Filtrat
Ach
37(.70)
35(.50)
33(.30) | ope/.001 | | 6 | | | | | RR-5
R-5
R-10
Cnh 100 | 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 | Infi
ELF
.0007
.0005 | O Con | | ibis e | | onent
KBtu) | (/sf)
27.22
12.64
10.56
8.22
7.06
5.07
3.84 | 918.20
26.437
(/ft) | 26.90
75.57
61.23
63.90
43.57
.000
65.66
6.224 | 19.82
3.70
1.05
60
97
-2.05
13.76 | (/sf)
26.82
53.00
33.31
10.15 | 68.01
0.291 | | rototype | | Comp
(comp | 662
662
662
662
663
664 | 4 | 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 | . 68
. 68
. 27
. 25
. 48
. 12
. 58 | .63
.47
.88 | 4.2 | | α. | ъ | Delta
(MBti | 471111 | e(DD)
e(DDS)
asement | -18
-18
-18
-18
-18
-18
-18
-18
-18
-18 | | -valu
6 - 10
6 - 13
15 | e (DD)
e (DDS)
MBtu
MBtu
MBtu | | MApartment | Loa | | - 113
- 13
- 13
- 13
- 13
- 13 | ο r
σ > α | | LLLLLOA> | - 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 9 2 8 2 8 | | | CD. | | ≱ مخضخ مخضخ مخضخ | S Cu | 484852 | S - + + + + | ≱ | S | | МАраг | aating | | | | 4 00 4 00 E — 2 | | ¥indo
21 1 2 2 1 2 2 1 2 2 1 2 2 1 2 1 2 1 2 | S
68
9.90
4. | | | ټ. | ponent
(KBtu) | | 8.471 C
6.471 C
(/ft) Heate | 61.57 R-0
32.23 R-5 4
23.90 R-5 8
26.90 R-10 4
115.73 R-10 8
6.908 In
6.908 Cu
9.884 Cu | .35 . R-0
.507 R-11 fl
.50 R-30 fl
R-38 fl
R-49 fl
R-49 fl
S-564 S-0
.64 S-0
S-0
S-0
S-0
S-0
S-0
S-0
S-0
S-0
S-0 | sf flr) Window
16.71 1-P
11.55 2-P
6.70 3-P
R-1 | 3.802 Cu
Cuad = 68.9
Load = 19.9 | | WYEC MApar | eati | a Compone
tu) (KBt | (/sf)
1.05 29.94 RR
29.94 RR
2.81 8.59 RR
4.40 5.95 RR
5.70 3.71 RR
6.15 2.40 | 5) 5443.63 S
-66.471 C
(/ft) Heate | .05 61.57 R-0
.93 32.23 R-5 4
.18 23.90 R-5 8
.09 26.90 R-10 4
.42 15.73 R-10 8
.6-6.908 In
.6-6.908 Cu
.70 -59.884 Cu | 65 2.07 R-11 fl
59 .50 R-19 fl
2050 R-30 fl
R-38 fl
R-38 fl
R-49 fl
3901.64 Slo | n (/sf flr) Window
.00 16.71 1-P
6.18 11.55 2-P
2.00 6.70 3-P
R-1 | 21.208
3.802 Cu
3ase Load = 68.9
ical Load = 19.9 | | NY WYEC | eati | ompone
(KBt | ing (/sf) W
-11.05 11.53
-12.81 8.59 R
-14.40 5.95 R
-14.95 5.01 R
-15.70 3.01 R
-16.16 3.01 R
-16.52 2.40 | e(DDS) 5443.63 S
e(DDS) -66.471 C
(/ft) Heate | -10.05 61.57 R-0
-10.93 32.23 R-5 4
-11.18 23.90 R-5 8
-11.09 26.90 R-10 4
-11.42 15.73 R-10 8
R-10 6402.25 SUDS) -5.908 Towl | 65 2.07 R-11 fl
59 .50 R-19 fl
2050 R-30 fl
R-38 fl
R-38 fl
R-49 fl
3901.64 Slo | ion (/sf flr) Window
.00 16.71 1-P
-6.18 11.55 2-P
-12.00 6.70 3-P
R-1 | ELF 21.208 SI
ELF 3.802 Cu
Base Load = 68.9
Typical Load = 19.9 | | WYEC | eati | elta Compone
(MBtu) (KBt | ng (/sf) W
-11.05 11.53 R
-12.81 8.59 R
-14.40 5.95 R
-14.95 5.01 R
-15.70 3.77 R
-16.52 2.40 | (DDS) 5443.63 S
(DDS) -66.471 C
(/ft) Heate | -10.05 61.57 R-0 -10.93 32.23 R-5 4 -11.18 23.90 R-5 8 -11.42 15.73 R-10 8 R-10 R-10 R-10 R-10 R-10 R-10 R-10 | -8.08 6.35 R-0
10.65 2.07 R-11 fl
11.59 .50 R-19 fl
12.2050 R-30 fl
R-38 fl
R-49 fl
D) 3901.64 Slo
Our | ion (/sf flr) Window .00 16.71 1-P -6.18 11.55 2-P -12.00 6.70 3-P R-1 | ELF 21.208 SI
ELF 3.802 Cu
Base Load = 68.9
Typical Load = 19.9
esidual Load =4 | | | ooling Load | Delta Component
(MBtu) (KBtu) | 24.0.4.4 | Slope(DD) 909.89
Curve(DDS) -22.057
Heated Basement (/ft) | -0 -4.03 19.
-5 8ft -4.84 15.
-10 8ft -5.09 13.
-10 8ft -5.30 13.
-10 8ft -5.30 13.
Slope(DD) 379.
Curve(DDS) -2.33 | Crawl R-0 R-11 flr .26 4.94 R-19 flr .27 4.94 R-38 flr .34 4.99 R-49 flr .36 5.00 R-49 flr .36 5.00 R-49 flr .36 5.00 R-49 flr .36 5.00 Curve(DDS) -80.06 Curve(DDS) 5.038 | Window U-value (/sf) 1-Pane .00 5.55 2-Pane71 1.70 3-Pane83 1.03 R-1098 .24 | Slope(DD) 92.43
Curve(DDS) 4.455
39.81 MBtu
18.84 MBtu
.74 MBtu | |--------------------------|--------------|----------------------------------|---|--|--|--|--|---| | ng Series Two | °, | Deita Component
(MBtu) (KBtu) | Ceiling (/sf) R-0 .000 7.54 R-7 -6.93 3.04 R-11 -8.04 2.32 R-19 -9.03 1.68 R-22 -9.43 1.42 R-38 -9.97 1.47 R-38 -10.29 .86 R-49 -10.56 .69 R-60 -10.73 .57 | Slope(DD) 1571.39
Curve(DDS) -50.489
Slab (/ft) | 6 2ft -7.61 -1.6
5 4ft -7.77 -2.5
10 2ft -7.79 -2.1
10 4ft -7.79 -2.6
Intercept -1.67 -1.9
Slope(DD) -763.3
Curve(DDS) 55.05 | R-0 -4.03 2.15 R-11 flr -1.56 3.76 R-19 flr -1.01 4.11 R-30 flr66 4.34 Intercept 4.926 Slope(DD) -782.35 Curve(DDS) 47.047 | Infiltration (/sf flr)
ELF Ach
.0007(.64) .00 3.41
.0005(.45) -1.45 2.47
.0003(.29) -2.94 1.50 | Slope/.001ELF 5.097
Curve/.001ELF325
Base Load =
Typical Load =
Residual Load = | | One Story Prototype Sidi | Heating Load | Delta Component
(MBtu) (KBtu) | Wall
R-0
R-1
R-1
R-11 -12 90 8.19
R-13 -14.88 6.43
R-19 -15.86 5.56
R-27 -17.59 4.01
R-34 -18.66 3.06 | Slope(DD) 3987.38
Curve(DDS) -61.393
Heated Basement (/ft) | 14074.7.
140401.7. | -0 .00 16.0
-11 flr -18.95 3.
-19 flr -22.10 1.0
-30 flr -23.96
-49 flr -25.62
Intercept -2.5.5
Slope(DD) 3777.0
Curve(DDS) -32.19 | Window U-value (/sf) 1-Pane .00 95.40 2-Pane -9.81 42.31 3-Pane -12.69 26.75 R-10 -16.07 8.44 | Slope(DD) 3585.71
Curve(DDS) 1.055
107.79 MBtu
43.37 MBtu | | Oklahoma City OK WYEC | | Deita Component
(MBtu) (KBtu) | Ceiling (/sf) R-0 .00 21.07 R-7 -19.51 8.41 R-11 -22.62 6.38 R-19 -25.42 4.57 R-20 -26.50 3.87 R-30 -27.94 2.93 R-38 -28.81 2.37 R-49 -29.58 1.87 R-60 -30.08 | Slope(DD) 4265.52
Curve(DDS) -119.912
Slab (/ft) | R-0 -16.69 47.97 R-5 2ft -20.13
27.25 R-5 4ft -21.07 21.58 R-10 2ft -20.76 23.45 R-10 4ft -22.03 15.80 Intercept .000 Slope(DD) 4854.82 Curve(DDS) -53.133 | -0
-11 flr -20.01 3.0
-19 flr -22.42 1.4
-30 flr -23.97 .4
Intercept -2.25
Slope(DD) 3656.73 | ration
ch
87)
52) -5
36)-11 | Slope/.001ELF 17.337
Curve/.001ELF 1.705
Base Load = Typical Load = Residual Load = | | | Cooling Load | Delta Component
(MBtu) (KBtu) | Wall R-0 R-0 R-796 R-1 R-11 -1.09 .56 R-13 -1.17 .39 R-19 -1.21 .31 R-27 -1.27 .19 R-34 | Slope(DD) 96.15
Curve(DDS) 80.573
Heated Basement (/ft) | -6 4ft -1.56 33.9
-5 8ft -1.79 28.2
-10 4ft -1.84 26.9
-10 8ft -1.92 24.9
Intercept 20.79
Slope(DD) -1.84
Curve(DDS) -1.84 | Craw! (/sf) R-0 | Window U-value (/sf) 1-Pane .00 -2.34 2-Pane29 -4.35 3-Pane09 -2.95 R-10 .15 -1.30 | Slope(DD) -596.10
Curve(DDS) 19.226
26.86 MBtu
18.36 MBtu
8.33 MBtu | |------------------------|--------------|----------------------------------|--|---|--|---|---|---| | ling Series Two | ŭ | Deita Component
(MBtu) (KBtu) | Ceiling (/sf) R-Ø 6.67 R-7 -2.58 2.37 R-11 -2.99 1.69 R-19 -3.36 1.07 R-22 -3.45 1.07 R-30 -3.58 71 R-38 -3.65 .59 R-49 -3.75 .42 R-6Ø -3.81 .32 | Slope(DD) 945.85
Curve(DDS) 30.194
Slab (/ft) | 2ft -2.96 -1.
4ft -2.97 -1.
0 2ft -2.95
0 4ft -2.95
1 1 1 -2.96 -1.
1 1 1 -2.96 -1.
Slope(DD) -382.
Curve(DDS) 25.8 | Unheated Basement (/sf) R-0 R-11 flr63 3.81 R-19 flr39 4.22 R-30 flr23 4.48 Intercept 5.175 Slope(DD) -938.00 Curve(DDS) 72.257 | Infiltration (/sf flr)
ELF Ach
.0007(.67) .00 2.93
.0005(.48) -1.08 2.03
.0003(.29) -2.10 1.18 | Slope/.001ELF 3.750
Curve/.001ELF .625
Base Load = Typical Load = Residual Load = | | Mid Town Prototype Sid | Heating Load | Delta Component
(MBtu) (KBtu) | Wall R-0 R-7 R-1 R-11 R-13 R-13 R-13 R-13 R-13 R-13 | Slope(DD) 3228.02
Curve(DDS) 67.412
Heated Basement (/ft) | 4ft -7.21 47.1
8ft -7.56 38.3
0 4ft -7.51 39.6
0 8ft -7.93 29.1
Intercept 7.09
Slope(DD) 2083.0
Curve(DDS) -5.00 | R-0
R-11 flr -6.93 3.61
R-19 flr -8.01 1.81
R-30 flr -8.09 .84
R-49 flr -9.1001
Intercept -1.573
Slope(DD) 3007.95
Curve(DDS) 49.695 | 1-Pane .00 81.85
2-Pane -7.40 30.46
3-Pane -9.06 18.91
R-10 -11.02 5.32 | Slope(DD) 2180.28
Curve(DDS) 34.85Ø
51.77 MBtu
22.17 MBtu
3.01 MBtu | | Oklahoma City OK WYEC | Ť | Delta Component
(MBtu) (KBtu) | Ceiling (/sf) R-0 .00 22.80 R-7 -8.47 8.68 R-11 -9.82 6.42 R-19 -11.04 4.40 R-22 -11.64 4.40 R-30 -12.01 2.77 R-38 -12.55 2.21 R-49 -12.62 1.77 R-60 -12.79 1.48 | Slope(DD) 3996.89
Curve(DDS) -25.622
Slab (/ft) | 2ft -8.34 18.8
4ft -8.52 14.3
2ft -8.65 15.8
11 11 16.6 15.8
Slope(DD) 2798.3
Curve(DDS) 57.63 | f r -5.80 5.
 f r -7.83 2.
 f r -8.46 1.60 f r -8.86
 f r -8.86
 Intercept -1.4 Slope(DD) 2514 | Infiltration (/sf flr)
ELF Ach
.0007(.87) .00 10.57
.0005(.60) -4.45 6.86
.0003(.37) -8.24 3.71 | Slope/.001ELF 10.291
Curve/.001ELF 6.875
Base Load = Typical Load = Residual Load = | | | Cooling Load | ot Delta Component (MBtu) (KBtu) | Wall (/sf) R-Ø .00 2.86 R-763 .88 7 R-1172 .60 4 R-1378 .39 6 R-2782 .29 7 R-2786 .15 8 R-3486 .15 | 4 Slope(DD) 110.37
6 Curve(DDS) 78.324
) Heated Basement (/ft) | R-Ø
R-5 4ft -1.36
R-5 8ft -1.61
R-10 4ft -1.65
R-10 8ft -1.65
Intercept 11
Slope(DD) 22
Curve(DDS) | Crawl (/sf) R-0 .00 3.94 R-19 flr .39 4.58 R-30 flr .38 4.58 R-49 flr .38 4.57 Intercept 4.517 Slope(DD) 112.49 Curve(DDS) -43.758 | 1r) Window U-value (/sf) 1-Pane .00 -1.49 1 2-Pane31 -3.65 3-Pane14 -2.48 R-10 .06 -1.11 | Slope(DD) -513.82
Curve(DDS) 17.318
 = 24.86 MBtu
 = 17.26 MBtu
 = 7.19 MBtu | |-----------------------------|--------------|----------------------------------|---|--|---|---|--|---| | Series Two | | Delta Component
(MBtu) (KBtu) | Ceiling (/sf
R-0 .864 2.47
R-11 -3.67 1.77
R-19 -3.44 1.11
R-22 -3.56 .91
R-38 -3.71 .76
R-49 -3.86 .55
R-60 -3.90 .38 | Slope(DD) 995.24
Curve(DDS) 27.926
Slab (/ft) | 2ft -2.44 -2.4
4ft -2.42 -1.8
8 2ft -2.42 -1.8
0 4ft -2.44 -2.4
Intercept -2.42 -1.6
Slope(DD) -595.2
Curve(DDS) 33.32 | asted Basement (/sf) -1.36 1.68 1 flr50 3.11 9 flr26 3.52 0 flr10 3.78 Intercept 4.480 Slope(DD) -957.00 Curve(DDS) 80.013 | nfiltration (/sf fl
LF Ach .00 2.85
007(.64) .101 2.01
003(.29) -1.99 1.19 | ope/.001ELF 3.896
rvs/.001ELF .260
Base Load
Typical Load
Residual Load | | MApartment Prototype Siding | iting Load | Delta Component
(MBtu) (KBtu) | | Slope(DD) 3125.00
Curve(DDS) 96.557
Heated Basement (/ft) | 6 4ft -8.08 48.33 R-5.81 90.83 R-5.84 -8.39 38.00 R-10 4ft -8.35 39.33 R-10 8ft -8.73 26.66 R-510pe(DD) 2515.44 Curve(DDS) -6.160 | R-0 | Window U-value (/sf) In EL 1-Pane .00 81.79 .00 2-Pane -7.60 29.02 .00 3-Pane -9.20 17.91 .00 R-10 -11.08 4.85 | Slope(DD) 1960.62 Slo
Curve(DDS) 43.093 Cur
49.51 MBtu
20.85 MBtu
3.14 MBtu | | Oklahoma City OK WYEC N | Неа | Delta Component
(MBtu) (KBtu) | (/s
-0 | Slope(DD) 3879.24
Curve(DDS) 9.744
Slab (/ft) 1 | .19 44.50
.84 23.00
.01 17.33
.95 19.16
.15 12.66
.869
.25
.900
.900
.900
.900
.900
.900
.900
.900
.900
.900
.900
.900
.900
.900
.900
.900
.900
.900
.900
.900
.900
.900
.900
.900
.900
.900
.900
.900
.900
.900
.900
.900
.900
.900
.900
.900
.900
.900
.900
.900
.900
.900
.900
.900
.900
.900
.900
.900
.900
.900
.900
.900
.900
.900
.900
.900
.900
.900
.900
.900
.900
.900
.900
.900
.900
.900
.900
.900
.900
.900
.900
.900
.900
.900
.900
.900
.900
.900
.900
.900
.900
.900
.900
.900
.900
.900
.900
.900
.900
.900
.900
.900
.900
.900
.900
.900
.900
.900
.900
.900
.900
.900
.900
.900
.900
.900
.900
.900
.900
.900
.900
.900
.900
.900
.900
.900
.900
.900
.900
.900
.900
.900
.900
.900
.900
.900
.900
.900
.900
.900
.900
.900
.900
.900
.900
.900
.900
.900
.900
.900
.900
.900
.900
.900
.900
.900
.900
.900
.900
.900
.900
.900
.900
.900
.900
.900
.900
.900
.900
.900
.900
.900
.900
.900
.900
.900
.900
.900
.900
.900
.900
.900
.900
.900
.900
.900
.900
.900
.900
.900
.900
.900
.900
.900
.900
.900
.900
.900
.900
.900
.900
.900
.900
.900
.900
.900
.900
.900
.900
.900
.900
.900
.900
.900
.900
.900
.900
.900
.900
.900
.900
.900
.900
.900
.900
.900
.900
.900
.900
.900
.900
.900
.900
.900
.900
.900
.900
.900
.900
.900
.900
.900
.900
.900
.900
.900
.900
.900
.900
.900
.900
.900
.900
.900
.900
.900
.900
.900
.900
.900
.900
.900
.900
.900
.900
.900
.900
.900
.900
.900
.900
.900
.900
.900
.900
.900
.900
.900
.900
.900
.900
.900
.900
.900
.900
.900
.900
.900
.900
.900
.900
.900
.900
.900
.900
.900
.900
.900
.900
.900
.900
.900
.900
.900
.900
.900
.900
.900
.900
.900
.900
.900
.900
.900
.900
.900
.900
.900
.900
.900
.900
.900
.900
.900
.900
.900
.900
.900
.900
.900
.900
.900
.900
.900
.900
.900
.900
.900
.900
.900 | fir -8.46 1.78 fir -9.03 .23 fir -9.39 .23 lope(DD) 2318.52 urve(DDS) -224.199 | (/sf fir)
80 10.45
15 6.74
20 3.61 | Slope/.001ELF 9.854
Curve/.001ELF 7.240
Base Load = Typical Load = Residual Load = | | | | component
(KBtu) | (/sf)
3.59
1.87
1.62
1.128
1.11
1.81 | 823.75
-29.054
(/ft) | 8.71
4.37
3.89
2.98
2.32
2.07.86 | (/sf) | 3.43
4.13
4.13
4.20
4.20
4.30
1.44.33 | (/sf)
4.05
1.99
1.27 | 182.26
-1.096 | |-----------|------------|---------------------|--|-------------------------------|---|----------|--|---|--| | | þe | Delta Co
(MBtu) | -1.08
-1.093
-2.08
-2.08
-2.08
-3.12
-3.13 | pe(DD)
ve(DDS)
Basement | -3.83
t -4.53
t -4.63
t -4.78
t -4.89
ercept
pe(DD)
ve(DD) | | .00
.96
 | J-value
.000
38
51 | pe (DD)
ve (DDS)
MBtu
MBtu
MBtu | | | Cooling Lo | | 8 | Slo
Cur
Heated | R-6
R-5
R-5
8-16
8-16
10 8ft
Intel
S-100
Curve | Crawi | R-6
R-11 fl
R-30 fl
R-38 fl
R-49 fl
S-07
S-07
Cury | Window U | Slo
Cur
26.80
9.47 | | | J | omponent
(KBtu) | 6.56
6.56
2.69
2.08
1.52
1.52
1.29
79
.79 | 1435.75
-55.555
(/ft) | -5.75
-5.51
-4.85
-5.39
-4.49
-782.46
41.095 | t (/sf) | 2.70
3.19
3.50
4.327
1126.95
90.893 | (/sf flr)
1.72
1.25 | 2.630
243
243
 | | s Two | | Delta Co
(MBtu) | . 5 . 96 | (00)
(00s) | -6.23
-6.19
-6.19
-6.17
-6.17
-6.02
e(DD) | Basemen | 11.11
37
11
11 | tion
.000
72
1.47 | 001ELF
001ELF
Base
Typica
Residua | | ing Serie | | _ | 0
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8 | Slope
Curve
Slab | R-6
R-5
R-5
R-16
R-10
R-10
Aft
R-10
Aft
Curve | Unheated | R-11 flr R-19 flr R-3Ø flr Intercep Slope(DD Curve(DD | Infiltra
ELF Ach
.0007(.58)
.0005(.42) | Slope/.curve/.c | | P S P | | omponent
(KBtu) | (/sf)
32.24
15.74
13.39
10.56
9.15
6.58
5.00 | 6532.25
100.028
(/ft) | 108.70
72.74
60.27
63.22
43.76
.000
4463.37 | (/sf) | 20.11
1.91
-1.26
-3.30
-3.77
-5.11
-8.178
6316.58 | (/sf)
154.62
73.77
46.94
15.38 | 6607.56
-28.444 | | Prototyp | ъ | Deita Co
(MBtu) | -18.54
-21.18
-24.37
-25.95
-38.84 | e(DD)
e(DDS) -
asement | -12.93
-18.96
-20.97
-20.48
-20.48
-23.71
e(DD)
e(DDS) | | .000
-28.044
-32.92
-36.06
-36.78
-38.85
-00t
(00) | -value
6 .000
6 -14.94
6 -19.90 | e(DD)
e(DDS)
MBtu
MBtu
MBtu | | One Story | ating Loa | _ | X R R R R R R R R R R R R R R R R R R R | Slope
Curve
Heated B | R-6
R-5
R-5
R-18
R-10
R-10
Intt
S-10
S-02
CUT | Crawl | R-0
R-11 flr
R-19 flr
R-38 flr
R-49 flr
Inter
Slope | Window U. 1-Pane 2-Pane 3-Pane R-10 | Slope
Curve
172.10 h
56.49 h
5.69 h | | WYEC | H
OH | mponent
(KBtu) | (/sf)
34.31
13.70
10.40
7.45
6.31
4.78
3.86
3.04 | 6957.45
197.385
(/ft) | 56.77
24.18
14.78
18.10
4.91
4.91
-22.786
8396.37 | t (/sf) | 11.72
1.96
79
-2.55
-7.298
6457.53
536.162 | (/sf fir)
19.90
14.10
8.39 | 27.630
1.137
se Load =
al Load =
al Load = | | | | Delta Cor
(MBtu) | ing
-31.75
-36.82
-41.37
-43.12
-45.47
-46.89
-48.15 | e(DD)
e(DDS) -1 | -21.55
-26.96
-28.52
-27.97
-30.16
rcept
e(DD) | Ваѕешел | -12.93
-27.96
-32.18
-34.90
-6(DD)
-6(DD) | ation
6) .@@
9) -8.93
5)-17.72 | Ø1ELF
Ø1ELF
Ba
Typic
Residu | | Omaha NB | | | 0 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 | Slope
Curve | R-6
R-5
R-5
2ft
R-10
2ft
R-10
Intel
S-00
Curve | Unheated | R-0
R-11 flr
R-19 flr
R-30 flr
Inter
Slope
Curve | Infiltre
ELF Ach
.0007(.86
.0005(.55 | Slope/.Øl
Curve/.Øl | | | a Component
tu) (KBtu) | (/sf)
.00 2.80
2.80
71 1.31
94 .83
1.00 .70
1.09 .52 | 502.04
3.326
ont (/ft) | .39 7.40
.58 2.65
.58 2.65
.63 1.40
.64 1.15
.000
.79.44 | (/sf)
.00 2.81
.43 3.53
.46 3.58
.50 3.64
.51 3.66
.54 3.70
.105.30
.105.30 | • (/sf)
.000 -1.36
.10 -2.06
.00 -1.39
.1160 | -273.81
8.418 | |---------------------------------------|----------------------------------|---|--|--
--|--|---| | 7 60 - 00 - 100 0 | J | W R R R R R R R R R R R R R R R R R R R | Slope(DD)
Curve(DDS)
Heated Basemen | R-0
R-5 4ft -1
R-5 8ft -1
R-10 4ft -1
R-10 8ft -1
Slope(DD)
Curve(DDS) | Crawl R-0 R-11 flr R-19 flr R-30 flr R-38 flr R-49 flr S-00(DD) Curve(DDS) | Window U-valu
1-Pane
2-Pane -
3-Pane -
R-10 | Slope(DD)
Curve(DDS)
: 17.96 MBtu
: 11.45 MBtu
: 3.97 MBtu | | ng Series Two | Delta Component
(MBtu) (KBtu) | Ceiling (/sf) R-Ø .00 6.15 R-7 -2.25 2.40 R-11 -2.61 1.81 R-19 -2.93 1.27 R-22 -3.04 1.08 R-38 -3.29 .67 R-49 -3.38 .62 R-60 -3.44 .42 | Slope(DD) 1176.53
Curve(DDS) -23.445
Slab (/ft) | R-0 -2.36 -16.85
R-5 2ft -2.33 -16.10
R-5 4ft -2.28 -14.85
R-10 2ft -2.32 -15.85
R-10 4ft -2.27 -14.60
Intercept -11.546
Slope(DD) -1010.66
Curve(DDS) 47.545 | Unheated Basement (/sf) R-0 -1.39 .49 R-11 fir39 2.16 R-19 fir10 2.64 R-30 fir .08 2.94 Intercept 3.771 Slope(DD) -1127.32 Curve(DDS) 95.179 | Infiltration (/sf flr)
ELF Ach
.0007(.54) .00 1.68
.0005(.38)54 1.23
.0003(.23) -1.11 .76 | Slope/.001ELF 2.625
Curve/.001ELF312
Base Load = Typical Load = Residual Load = | | Mid Town Prototype Sidi
ating Load | | Waii (/sf) R-0 R-7 R-7 R-11 -9.01 R-13 R-13 R-10.33 9.89 R-19 -10.99 R-27 R-27 -12.12 R-34 -12.82 4.67 | Slope(DD) 6024.22
Curve(DDS) -28.456
Heated Basement (/ft) | R-Ø -7.40 130.17 R-5 4ft -9.47 78.42 R-5 8ft -10.06 63.67 R-10 4ft -9.96 66.17 R-10 8ft -10.79 45.42 Intercept .000 Slope(DD) 4454.47 Curve(DDS) -30.928 | R-0
R-11 flr -10.40 3.68
R-19 flr -12.18 .71
R-30 flr -13.25 -1.08
R-38 flr -13.50 -1.49
R-49 flr -14.21 -2.67
Intercept -5.465
Slope(DD) 5629.07
Curve(DDS) -90.830 | Window U-value (/sf) 1-Pane .00 140.00 2-Pane -11.35 61.18 3-Pane -14.60 38.62 R-10 -18.42 12.08 | Slope(DD) 5121.76
Curve(DDS) 6.868
82.80 MBtu
25.06 MBtu
1.76 MBtu | | Omaha NB WYEC | Delta Component
(MBtu) (KBtu) | Ceiling (/sf) R-0 35.65 R-7 -13.07 13.87 R-11 -15.16 10.40 R-19 -17.03 7.27 R-22 -17.70 6.15 R-36 -19.15 3.74 R-49 -19.62 2.95 R-60 -19.93 2.44 | Slope(DD) 6706.65
Curve(DDS) -116.857
Slab (/ft) | ft -11.66 23.
ft -12.02 14.
ft -11.90 17.
ft -11.98 17.
ft -12.38 5.
tercept -18.6
ope(DD) 7154. | Unheated Basement (/sf) R-0 R-11.09 2.53 R-19 flr -11.09 2.53 R-30 flr -13.1286 Intercept -4.523 Slope(DD) 5039.74 Curve(DDS) -480.784 | Infiltration (/sf flr)
ELF Ach
.0007(.82) .00 18.46
.0005(.61) -6.78 12.81
.0003(.37)-13.20 7.46 | Slope/.001ELF 23.750
Curve/.001ELF 3.750
Base Load = Typical Load = Residual Load = | | Cooling Load | Delta Component
(MBtu) (KBtu) | Wall (/sf) R-0 .000 2.78 R-747 1.31 R-1153 1.09 R-1361 .85 R-2772 .53 R-3476 .40 | Slope(DD) 513.81
Curve(DDS) .652
Heated Basement (/ft) | R-0 -1.24 8.11
R-5 4ft -1.36 3.95
R-5 8ft -1.37 3.78
R-10 4ft -1.39 2.95
R-10 8ft -1.42 2.11
Intercept .000
Slope(DD) 197.97
Curve(DDS) .022 | Crawl (/sf) | R-0 .00 2.47 R-11 flr .54 3.37 R-19 flr .59 3.46 R-30 flr .62 3.51 R-49 flr .63 3.52 Intercept 3.607 Slope(DD) -102.00 Curve(DDS) -23.266 | Window U-value (/sf)
1-Pane .00 -2.98
2-Pane15 -3.99
3-Pane .04 -2.68
R-10 .26 -1.14 | Slope(DD) -520.60
Curve(DDS) 15.445 | 16.08 MBtu
10.29 MBtu
3.38 MBtu | |--|----------------------------------|--|---|---|-------------------------|--|--|---|--| | Series Two | Delta Component
(MBtu) (KBtu) | Ceiling (/sf) R-0 .00 5.78 R-7 -2.18 2.15 R-11 -2.52 1.58 R-22 -2.93 1.06 R-30 -3.07 .89 R-38 -3.14 .54 R-49 -3.21 .42 R-60 -3.26 .35 | Slope(DD) 950.47
Curve(DDS) 4.125
Slab (/ft) | R-0 -1.88 -13.05 R-5 2ft -1.85 -12.22 R-5 4ft -1.82 -11.05 R-10 2ft -1.84 -11.89 R-10 4ft -1.81 -10.72 Intercept -7.750 Slope(DD) -979.80 Curve(DDS) 44.930 | Unheated Basement (/sf) | R-0
R-11 flr43 1.76
R-19 flr11 2.29
R-3Ø flr .1Ø 2.63
Intercept 3.589
Slope(DD) -1326.33
Curve(DDS) 137.588 | Infiltration (/sf flr)
ELF Ach
.0007(.58) .00 1.54
.0005(.42)49 1.13
.0003(.25) -1.01 .70 | Slope/.001ELF 2.417
Curve/.001ELF313 | Base Load =
Typical Load =
Residual Load = | | MApartment Prototype Siding
eating Load | Delta Component
(MBtu) (KBtu) | Wall (/sf) R-0 .00 31.82 R-7 -5.37 14.86 R-11 -6.14 12.45 R-13 -7.01 9.69 R-27 -8.19 5.98 R-34 -8.65 4.54 | Slope(DD) 5825.14
Curve(DDS) 16.727
Heated Basement (/ft) | R-0 -8.90 152.23
R-5 4ft -10.75 90.56
R-5 8ft -11.27 73.40
R-10 4ft -11.18 76.40
R-10 8ft -11.90 52.23
Intercept .000
Slope(DD) 5101.15
Curve(DDS) -33.520 | Crawl (/sf) | R-0
R-11 flr -10.63 4.74
R-19 flr -12.45 1.70
R-30 flr -13.5920
R-38 flr -13.8520
R-49 flr -14.60 -1.88
Intercept -4.769
Slope(DD) 5894.06
Curve(DDS) -114.152 | Window U-value (/sf) 1-Pane .00 140.40 2-Pane -11.50 60.58 3-Pane -14.72 38.19 R-10 -18.51 11.86 | Slope(DD) 5016.96
Curve(DDS) 11.417 | 78.27 MBtu
23.03 MBtu
2.00 MBtu | | Omaha NB WYEC M | Delta Component
(MBtu) (KBtu) | Ceiling (/sf) R-0 .00 34.84 R-7 -12.80 13.50 R-11 -14.85 10.10 R-19 -16.68 7.04 R-22 -17.35 5.94 R-30 -18.23 4.46 R-38 -18.76 3.57 R-49 -19.20 2.85 R-60 -19.48 2.38 | Slope(DD) 6464.09
Curve(DDS) -98.986
Slab (/ft) | R-Ø -11.30 72.40 R-5 2ft -12.34 37.56 R-5 4ft -12.64 27.56 R-10 2ft -12.53 31.23 R-10 4ft -12.94 17.73 Intercept -10.081 Slope(DD) 8314.40 Curve(DDS) -107.372 | Unheated Basement (/sf) | R-0
R-11 fir -11.82 2.74
R-19 fir -12.91 .94
R-30 fir -13.6021
Intercept -3.465
Slope(DD) 4489.92
Curve(DDS) -454.357 | Infiltration (/sf flr)
ELF Ach
.0007(.82) .00 18.26
.0005(.61) -6.78 12.61
.0003(.36)-13.15 7.31 | Slope/.001ELF 23.063
Curve/.001ELF 4.322 | Base Load = Typical Load = Residual Load = | | ooling Load | Delta Component
(MBtu) (KBtu) | Wall (/sf) R-Ø . ØØ 2.84 R-7 -1.48 1.52 R-11 -1.69 1.33 R-13 -2.02 1.04 R-19 -2.19 .89 R-27 -2.44 .66 R-34 -2.60 .62 | Slope(DD) 681.32
Curve(DDS) -28.580
Heated Basement (/ft) | R-Ø -2.97 4.78 R-5 4ft -3.44 1.94 R-5 8ft -3.45 1.88 R-1Ø 4ft -3.57 1.16 R-1Ø 8ft -3.61 .92 Intercept .000 Slope(DD) 72.76 Curve(DDS) 1.081 | Crawl (/sf) | R-0
R-11 flr .86 3.00
R-19 flr .96 3.07
R-30 flr 1.09 3.15
R-38 flr 1.12 3.17
R-49 flr 1.21 3.23
Intercept 3.291
Slope(DD) -187.00
Curve(DDS) 4.226 | Window U-value (/sf)
1-Pane .000 2.36
2-Pane22 1.17
3-Pane30 .75
R-1039 .25 | Slope(DD) 107.44
Curve(DDS)685
20.84 MBtu
7.09 MBtu
-2.45 MBtu | |------------------------------------|----------------------------------|--|--|---|-------------------------|---|--|---| | ing Series Two | Delta Component
(MBtu) (KBtu) | Ceiling (/sf) R-0 R-7 R-1 R-11 R-11 R-13 R-13 R-2 R-38 R-38 R-38 R-38 R-38 R-49 R-57 R-7 R-7 R-7 R-7 R-7 R-7 R-7 R-7 R-7 R- | Slope(DD) 1170.14
Curve(DDS) -43.084
Slab (/ft) | R-Ø -4.70 -5.65 R-5 2ft -4.57 -4.86 R-5 4ft -4.47 -4.26 R-10 2ft -4.55 -4.74 R-10 4ft -4.65 -4.74 R-10 4ft -4.90 -3.84 Slope(DD) -670.90 Curve(DDS) 29.299 | Unheated Basement (/sf) | R-0 -2.97 .51
R-11 fir80 1.92
R-19 fir23 2.30
R-30 fir .14 2.53
Intercept 3.170
Slope(DD) -860.46
Curve(DDS) 66.828 | Infiltration (/sf flr) ELF Ach .0007(.55) .00 1.17 .0005(.39)54 .82 .0003(.24) -1.06 .48 | Slope/.001ELF 1.558 Curve/.001ELF .162 Base Load = Typical Load = Residual Load = | | One Story Prototype Sideating Load | Delta Component
(MBtu) (KBtu) | Wall R-0 R-7 -15.52 13.29 R-11 -17.73 11.32 R-13 -20.42 8.92 R-19 -21.76 7.73 R-27 -24.19 5.57 R-34 -25.69 4.24 | Slope(DD) 5537.79
Curve(DDS) -92.893
Heated Basement (/ft) | R-0 -11.79 91.65 R-5 4ft -16.79 61.53 R-5 8ft -18.53 51.04 R-10 4ft -18.13 53.45 R-10 8ft -20.85 37.07 Intercept .000 Slope(DD) 3756.49 Curve(DDS) -37.037 | Crawl (/sf) | R-0
'R-11 flr -24.56 1.59
R-19 flr -28.68 -1.09
R-30 flr -31.27 -2.77
R-38 flr -31.86 -3.15
R-49 flr -33.57 -4.26
Intercept -6.784
Slope(DD) 5160.17
Curve(DDS) -81.467 |) Window
U-value (/sf)
1-Pane .00 131.25
2-Pane -12.74 62.31
3-Pane -16.93 39.63
R-10 -21.86 12.96 | Slope(DD) 5560.54
Curve(DDS) -22.316
= 145.77 MBtu
= 46.59 MBtu
= 3.09 MBtu | | Philadeiphia PA TMY | Delta Component
(MBtu) (KBtu) | Ceiling (/sf) R-0 .000 29.25 R-7 -27.15 11.62 R-11 -31.49 8.81 R-19 -35.38 6.28 R-20 -36.84 4.03 R-30 -38.84 4.03 R-39 -40.04 3.25 R-49 -41.10 2.56 R-60 -41.79 2.12 | Slope(DD) 5851.26
Curve(DDS) -154.747
Slab (/ft) | R-Ø -18.66 50.26
R-5 2ft -23.21 22.85
R-5 4ft -24.52 14.96
R-1Ø 2ft -24.Ø4 17.85
R-1Ø 4ft -25.87 6.83
Intercept -15.917
Slope(DD) 6735.14
Curve(DDS) -95.899 | Unheated Basement (/sf) | R-0 -11.79 9.88 R-11 fir -24.56 1.59 R-19 fir -28.0870 R-30 fir -30.35 -2.17 Intercept -6.122 Slope(DD) 5363.04 Curve(DDS) -437.355 | Infiltration (/sf flr)
ELF Ach
.0007(.81) .00 17.44
.0005(.57) -7.85 12.35
.0003(.34)-15.56 7.34 | Slope, 001ELF 24 123 Curve, 001ELF 1.136 Base Load = Typical Load = Residual Load = | | | | mponent
(KBtu) | (,sf)
2.36
1.07
1.06
6.56
56
56
33 | 405.91
4.144
(/ft) | 3.88
1.13
1.13
.38
.000
12.21
2.028 | (/sf) | 2.14
2.83
3.03
3.03
3.11
3.15
3.360
21.475 | (/sf)
-2.45
-2.38
-1.58 | 290.04
7.476 | |------------|--------------|---------------------|---|-----------------------------|--|------------|--|--|---| | | | elta Co
(MBtu) | 0.1.1.1.1.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0 | (DD)
(DDS)
sement | -1.13
-1.24
-1.27
-1.27
-1.27
-1.27
(00)
(00) | | .00
.41
.51
.57
.57
.58
.58
.61
.60) | . 00
. 01
. 01
. 12
. 26 | (DD) -
(DDS) -
Btu
Btu
Btu | | | Cooling Load | ۵ | ₩a-1
R-6
R-7
R-11
R-11
R-13
R-27 | Slope (Curve (Heated Bas | R-6
R-5
4ft
R-5
8ft
R-10
1nterc
Slope
Curve | Crawi | R-0
R-11 flr
R-19 flr
R-30 flr
R-38 flr
R-49 flr
Slope(Curve | Window U-vi | Slope (E
Curve (E
14.Ø6 MBt
8.91 MBt
3.23 MBt | | | ပိ | Component
(KBtu) | (/sf)
5.111
2.071
1.58
1.15
7.75
61 | 1082.61
-37.133
(/ft) | -13.37
-11.87
-10.87
-11.62
-10.12
-6.754
1105.10 | : (/sf) | 3.077
3.077
3.077
3.954.28 | (/sf flr)
1.10
.78
.46 | 1.500
1.104
1.004d = 1.004d = 1.004d = 1.004d | | → | | elta (
(MΒtυ) | | (\$00) | -1.82
-1.76
-1.75
-1.75
-1.69
(00) -1 | Basement | -1.13
28
82
82
.14
(00)
(00) | ion
39
39 | JELF
JELF
Bas
Typica
Residua | | Series | | ۵ | C C C C C C C C C C C C C C C C C C C | Slope | R-6
R-5 2ft
R-5 4ft
R-10 2ft
R-10 4ft
Inter
Slope
Curve | Unheated (| R-11 flr
R-13 flr
R-30 flr
Interc | Infiltrat
ELF Ach
.0007(.55)
.0005(.39)
.0003(.23) | Slope/.00
Curve/.00 | | ding | | | | | | | | | | | S: | | omponent
(KBtu) | (/sf) 26.52 12.59 10.51 10.51 8.21 7.07 5.08 | 4963.57
-6.124
(/ft) | 107.68
64.68
52.43
54.68
37.48
37.83
.000 | (/sf) | 18.16
3.01
.51
.1.32
-1.32
-2.30
626.17 | (/sf)
116.83
50.23
31.86
9.81 | 147.54
10.520 | | Prototype | | (MBtu) | . 68
-6.68
-7.63
-8.73
-9.27
-10.22 | (DD) 4
(DDS) sement | -6.59
-8.31
-8.88
-8.71
-9.48
(DD) 3
(DD) - | | .000
-9.09
-10.59
-11.49
-11.69
-12.28
.cept
(CDD) 4 | . 00
-9.59
-12.26
-15.41 | oe(DD) 4 oe(DDS) MBtu MBtu MBtu | | Town | ing Load | ۵ | Was | Slope
Curve | A STATE OF THE O | - × | 111 flr
119 flr
30 flr
38 flr
49 flr
Interc
Slope | ndow
U-1
1-Pane
2-Pane
3-Pane
R-10 | Stope
Curve
9.76 M
0.28 M | | ₹ | Heati | | | Ť | 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 | Ü | 44444 | Wir | 11 H H | | TMY | I | omponent
(KBtu) | (/sf)
30/sf)
11.79
11.79
8.82
6.15
5.19
3.92
3.15
2.49 | 5656.04
-88.758
(/ft) | 49.68
21.93
14.68
17.18
7.18
-12.491
5651.70 | t (/sf) | 7.18
2.05
.34
75
76
-3.786
4163.75
394.993 | 15.86
10.90
6.28 | 19.666
4.272
se Load : | | ohia PA | | elta (
(MBtu) | ing
-11.17
-12.96
-14.56
-15.13
-15.13
-15.13
-15.13
-15.13 | (SQQ) | -8.91
-10.02
-10.31
-10.21
-10.61
-10.61
(DD)
(DD) | Basemen | -6.59
-9.67
-10.69
-11.35
-11.35
(DD) | tion
.000
.5.95
)-11.49 | .001ELF
.001ELF
Typica
Residua | | Philadelph | | ۵ | C 6 9 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | Slope
Curve
Slab | R-6
R-5
2ft
R-5
4ft
R-10
2ft
R-10
1nter
Slope
Curve | Unheated | R-11 flr
R-13 flr.
R-30 flr.
Slope
Curvel | Infiltra
ELF Ach
.0007(.80
.0005(.60
.0003(.36 | Slope/.Ø
Curve/.Ø | | 4 | | omponent
(KBtu) | (/sf)
2.34 | . 6 | . 9 | 4. w. | | 452.86 | 4- | 4 | (/sf) | 22.70
2.70
2.91
2.91 | Ø.5.00 | (/sf
-2.7
-1.66 | 300.65 | | |------------|------------|---------------------|-------------------------|-----------------------|-------|-------|-------|---------------------|-----------|--|----------|---|----------------------------|--|----------------------|-------------------------------------| | | 70 | Delta Co
(MBtu) | 0 | 1 1
0 4 1
0 4 4 | 1 1 | 9.0 | | e(DD)
e(DDS) | asement | -1:-
-1:-
-1:-
00) | | | .7
(00)
(00S) | | - (\$99)
- (90) | Btu
Btu
Stu | | | ooling Loa | | ₩
- 8- 0 | | 1 1 | 3.6 | | Slop | Heated B | R-6
R-5
R-5
R-6
8ft
R-10
8ft
Slope
Curve | Crawl | R-0
R-11 fr
R-19 fr
R-30 fr
R-38 fr | Ind
Sicur | Window U-
1-Pane
2-Pane
3-Pane
R-10 | Slope | 12.56 MI
8.01 ME
2.81 ME | | | ပိ | omponent
(KBtu) | (/sf)
4.92 | - - | • | | | 986.86
-26.6Ø8 | (/ft) | -10.45
-8.95
-8.28
-8.78
-7.62
-5.190
-789.11 | t (/sf) | .22
1.39
1.77
2.01 | 2.686
-926.02
86.784 | (/sf flr)
.79
.49 | .625 | Coad = Load = Load = | | es Two | | Delta Co
(MBtu) | ling | 1 -2.06 | 4.0 | 2.6.5 | -2.7 | (00)
(e(00S) | ۵ | -1.40
-1.36
-1.34
-1.35
-1.35
-1.35
-1.36
(DD) | Basemen | 1.056 | rcept
e(00)
e(00S) | ration (ch 55) .00 | ØØ1ELF
ØØ1ELF | Bas
Typica
Residua | | Seri | | | Ce: | - 77 7 | 20 | , 60 | 4 9 | Slop | Slat | R-6
R-5
2ft
R-10
2ft
R-10
Intel
Slope | Unheated | R-0
R-11 flr
R-19 flr
R-30 flr | Intere
Slope
Curve | Infiltr
ELF Ac.
.0007(.5
.0005(.3 | Stope/.i | | | rpe Siding | | ponent
(KBtu) | (/sf)
26.59
12.34 | w 0 | œ o | | | 796.42
27.481 | (/ft) | 125.88
73.88
59.54
62.21
42.38
080.98 | (/sf) | 19.39
3.84
1.28
1.28
4.4 | | (/sf)
116.99
49.49
31.14
9.56 | 129.36
.5.233 | | | t Prototyp | 70 | Delta Com
(MBtu) | 6.2 | -5.16 | 6.2 | 7.2 | | • (DD) 4
• (DDS) | sement | -7.86
-9.42
-9.85
-9.85
-9.77
-10.36
(DD) 4 | | .000
-10.87
-11.81
-12.02 | cept
(00) 4
(00S) - | . 60
-9.72
-12.36
-15.47 | (00) 40
(00S) 1 | Btu
Btu
Btu | | MApartment | ating Load | _ | Wall
R-Ø | R-11
R-13 | 127 | 3 | | Slope | Heated Ba | R-6
R-5
Aft
R-18
R-18 Aft
R-18 Sft
Inter
Slope
Curve | Crawi | R-0
R-11 flr
R-19 flr
R-30 flr
R-38 flr | Sic | Window U-
1-Pane
2-Pane
3-Pane
R-10 | Slope | 65.95 MI
18.60 MI
1.00 MI | | TMY | H | omponent
(KBtu) | (/sf)
29.69
11.41 | 4.8 | ნ ~ | 9 4 | . o. | 364.80
60.207 | (/ft) | 62.21
33.04
25.21
28.04
17.21
17.21
49.834 | (/sf) | 6.29
2.16
.67 | -2.955
686.83
67.260 | (/sf flr)
15.84
10.90
6.29 | 19.708
4.167 | e Load ::
 Load ::
 Load :: | | phia PA | | Deita Con
(MBtu) | ing
.00
-100.9 | -12
-14 | -14.8 | -16.0 | -16.6 | e(DD) 5
e(DDS) - | | -9.77
-10.64
-10.88
-10.80
-11.12
-11.12
-10.00
-10.00 | Basement | -7.86
-10.34
-11.23
-11.80 | (DD) 3
(DDS) -3 | ation (h
h .00
0) -5.93
6)-11.46 | Ø1ELF
Ø1ELF | Base
Typical
Residual | | Philade! | | | | 1 1 | 3 2 | 6 4 | 9 | Slope | Siab | 2ft
4ft
3 2ft
3 4ft
Into | Unheated | R-0
R-11 fir
R-19 fir
R-30 fir | Slope
Curve | Infiltra
ELF Ach
.0007(.80
.0006(.60
.0003(.36 | Slope/.Ø
Curve/.Ø | | | | ooling Load | Delta Component (MBtu) | Wall R-0 R-0 R-7 R-7 R-11 R-13 R-13 R-13 R-13 R-13 R-13 R-27 R-27 R-34 R-34 R-34 R-34 R-34 R-34 R-34 R-34 | Slope(DD) 2608.90
Curve(DDS) -71.211
Heated Basement (/ft) | 4 . 10 | Crawl (/sf) | R-0
R-11 flr -3.89 6.60
R-19 flr -5.05 5.85
R-30 flr -5.88 5.31
R-38 flr -6.07 5.18
R-49 flr -6.62 4.83
Slope(DD) 1888.09
Curve(DDS) -170.681 | Window U-value (/sf)
1-Pane .00 27.96
2-Pane -2.57 14.06
3-Pane -3.51 8.98
R-10 -4.61 3.02 | Slope(DD) 1304.47
Curve(DDS) -9.291
89.69 MBtu
43.25 MB+ | 6.73 | |-------------------------|--------------|----------------------------------|---|--|--|-------------------------|---|---|--|---------| | ling Series Two | J | Delta Component
(MBtu) (KBtu) | Ceiling (/sf) R-0 .000 200.05 R-7 -18.55 8.01 R-11 -21.51 6.08 R-22 -25.19 3.69 R-30 -26.56 2.80 R-38 -27.39 2.27 R-49 -28.14 1.78 R-60 -28.62 1.47 | Slope(DD) 4072.36
Curve(DDS) -116.435
Slab (/ft) | R-Ø -12.36 10.20
R-5 2ft -12.67 8.33
R-5 4ft -12.83 7.37
R-1Ø 2ft -12.89 7.01
R-1Ø 4ft -13.13 5.56
Intercept .000
Slope(DD) 2345.73
Curve(DDS) -134.458 | Unheated Basement (/sf) | R-0
R-11 flr -6.16 5.13
R-19 flr -6.68 4.79
R-30 flr -7.01 4.57
Intercept 3.940
Slope(DD) 887.23
Curve(DDS) -104.988 | Infiltration (/sf flr) ELF Ach .0007(.51) .00 4.52 .0005(.37) -2.00 3.22 .0003(.22) -3.99 1.93 | T T 0 | Peo J | | One Story Prototype Sid | Heating Load | Delta Component
(MBtu) (KBtu) | Wall (/sf) R-0 R-0 R-1 R-1 R-13 R-13 R-13 R-19 R-2 R-2 R-2 R-34 R-34 R-34 R-34 R-34 R-34 R-34 R-34 | Slope(DD) 900.41
Curve(DDS) 71.850
Heated Basement (/ft) | R-0 -4.40 20.73 R-5 4ft -6.18 10.01 R-5 8ft -6.47 8.26 R-10 4ft -6.51 8.02 R-10 8ft -6.78 6.40 Intercept 2.731 Slope(DD) 325.97 Curve(DDS) 4.531 | Craw! (/sf) | R-0
R-11 fir -5.84 1.30
R-19 fir -6.99 .55
R-36 fir -6.99 .55
R-38 fir -7.07 .56
R-49 fir -7.31 .35
Intercept040
Slope(DD) 695.69
Curve(DDS) 59.500 |) Window U-value (/sf) 1-Pane .00 22.65 2-Pane -2.83 7.34 3-Pane -3.36 4.48 R-10 -3.98 1.11 | Slope(DD) 435.78
Curve(DDS) 15.992
= 36.44 MBtu
= 9.75 MBtu | 1.61 | | Phoenix AZ WYEC | • | Delta Component
(MBtu) (KBtu) | Ceiling (/sf) R-0 .00 9.67 R-11 -10.87 2.62 R-19 -12.21 1.75 R-22 -12.64 1.046 R-30 -13.23 1.048 R-49 -13.58 .869 R-60 -13.99 .59 | Slope(DD) 1558.23
Curve(DDS) 12.393
Slab (/ft) | R-Ø -6.81 6.22
R-5 2ft -7.71 .79
R-5 4ft -7.82 .13
R-1Ø 2ft -7.83 .07
R-1Ø 4ft -7.9353
Intercept .000
Slope(DD) -68Ø.83
Curve(DDS) 169.737 | Unheated Basement (/sf) | R-0
R-11 flr -6.58 .82
R-19 flr -7.06 .51
R-30 flr -7.37 .31
Intercept208
Slope(DD) 685.46
Curve(DDS) -40.782 | Infiltration (/sf flr)
ELF Ach
.0007(.55) .00 2.18
.0005(.39) -1.56 1.17
.0003(.25) -2.64 .47 | 3.896
Base Load | peo len | | | Cooling Load | Delta Component
(MBtu) (KBtu) | all (/sf
-0 .00 12.7
-7 -3.00 6.4
-1 -3.43 5.5 | 3.98
4.25
5.06
2.06 | D) 2754.
DS) -72.7 | -0 | > | R-0
R-11 flr -1.36 6.67
R-19 flr -1.80 5.94
R-30 flr -2.12 5.41
R-38 flr -2.19 5.29
R-49 flr -2.40 4.94
Intercept 4.048
Slope(DD) 1876.30 | M U-value (/sf
Pane .00 27.0
Pane -1.96 13.4
Pane -3.66 8.51 | 1234. | |--------------------|--------------|----------------------------------|---|--|--|---|-------------------------|--|---|---| | ng Series Two | ŭ | Delta Component
(MBtu) (KBtu) | eiling (/sf
-0 .00 21.2
-7 -7.68 8.4
-11 -8.91 6.3 | R-19 -10.01 4.52
R-22
-10.43 3.83
R-30 -10.98 2.90
R-38 -11.52 2.34
R-49 -11.62 1.84
R-60 -11.81 1.52 | Slope(DD) 4211.30
Curve(DDS) -106.994
Slab | 2ft -5.06 7.
2ft -5.09 6.
2ft -5.11 6.
4ft -5.15 6.
ntercept .00
lope(DD) 2134.
urve(DDS) -121.88 | Unheated Basement (/sf) | R-0 -2.29 5.12
R-11 flr -2.36 5.00
R-19 flr -2.49 4.78
R-30 flr -2.58 4.64
Intercept 4.192
Slope(DD) 635.72
Curve(DDS) -88.657 | (/sf
600 4
44 2
83 1 | Slope/.001ELF 5.375
Curve/.001ELF .521
Base Load =
Typical Load =
Residual Load = | | ype Sidi | | omponent
(KBtu) | (/sf)
6.43
2.55
2.00 | 4.0.00 | 763.06
80.288
(/ft) | | (/sf) | 4.65
1.45
1.01
.78
.73
.58
.58
657.01
39.596 | (/sf)
19.40
6.62
4.07
1.06 | 424.87
11.738 | | Mid Town Prototype | sating Load | Deita Co
(MBtu) | 6.1. | R-13 -2.38
R-19 -2.48
R-34 -2.75 | Slope(DD)
Curve(DDS)
Heated Basement | R-0
R-5 4ft -2.31
R-5 8ft -2.37
R-10 4ft -2.39
R-10 8ft -2.45
Intercept Slope(DD)
Curve(DDS) | Crawl | R-0
R-11 fir -1.92
R-19 fir -2.18
R-30 fir -2.35
R-38 fir -2.35
R-49 fir -2.44
Intercept
Slope(DD)
Curve(DDS) | Window U-value
1-Pane .00
2-Pane -1.84
3-Pane -2.21
R-10 -2.64 | Slope (DD)
Curve (DDS)
15.72 MBtu
4.97 MBtu
1.75 MBtu | | Phoenix AZ WYEC | ₩
₩ | Delta Component
(MBtu) (KBtu) | eiling (/sf
-0 .00 9.5
-7 -3.73 3.3
-11 -4.33 2.3 | R-19 - 5.01 1.24
R-30 - 5.01 1.24
R-38 - 5.32 . 72
R-49 - 5.41 . 58
R-60 - 5.46 . 49 | Slope(DD) 1276.87
Curve(DDS) 57.367
Slab (/ft) | R-0 -2.59 4.97 R-5 2ft -2.76 .72 R-5 4ft -2.77 .47 R-10 2ft -2.78 .22 R-10 4ft -2.8028 Intercept .0000 Slope(DD) -431.78 Curve(DDS) 123.999 | Unheated Basement (/sf) | R-0
R-11 fir -2.36 71
R-19 fir -2.49 .50
R-30 fir -2.57 .36
Intercept000
Slope(DD) 494.68
Curve(DDS) -38.849 | Infiltration (/sf flr)
ELF Ach
.0007(.55) .00 1.88
.0005(.41) -1.02 1.03
.0003(.25) -1.74 .43 | Slope/.001ELF .500
Curve/.001ELF 3.125
Base Load = Typical Load = Residual Load = | | | ing Load | Delta Component
(MBtu) (KBtu) | Wall (/sf) R-0 .00 2.23 R-7 -1.17 1.19 R-11 -1.34 1.04 R-13 -1.59 .81 R-27 -1.92 .52 R-34 -2.05 .40 | Slope(DD) 529.95
Curve(DDS) -21.461
ated Basement (/ft) | 6 4ft -2.24 2.5 8ft -2.58 10 4ft -2.58 10 4ft -2.58 10 4ft -2.58 10 ft -2.58 10 5lope(DD) -9. Curve(DDS) 1.55 | ٥ | 11 flr .88 2.25
19 flr .88 2.25
30 flr 1.00 2.33
38 flr 1.07 2.37
10 flr 1.12 2.41
Intercept 2.474
Slope(DD) -120.474
Slope(DD) -6.612 | .00
.00
.05
.08 | Slope(DD) 53.04
Curve(DDS)906
3.98 MBtu
3.67 MBtu | |---------------------------|-------------|----------------------------------|--|---|--|----------------------------|---|--|--| | g Series Two | Cooling | Delta Component
(MBtu) (KBtu) | Ceiling (/sf) R-0 .00 4.29 R-7 -3.89 1.76 R-11 -4.51 1.36 R-19 -5.07 1.00 R-22 -5.31 .84 R-38 -5.63 .63 R-49 -5.98 .50 R-60 -6.07 .35 | lope(DD) 938
urve(DDS) -36. | . 17 R-
. 60 R-
. 96 R-
. 96 R-
. 81 83 | Unheated Basement (/sf) Cr | R-0
R-11 fir51 1.35 R-1
R-19 fir02 1.67 R-1
R-30 fir .30 1.88 R-3
R-3
Intercept 2.434
Slope(DD) -756.26
Curve(DDS) 63.625 | (/sf flr) Wi
190 .43
19 .31 | Slope/.001ELF .617 Curve/.001ELF000 Base Load = 1 Typical Load = Residual Load = - | | One Story Prototype Sidin | eating Load | Delta Component
(MBtu) (KBtu) | Wall
R-0
R-7 -18.69 16.04
R-11 -21.35 13.67
R-13 -24.61 10.78
R-19 -26.22 9.34
R-27 -29.16 6.73
R-34 -30.96 5.12 | Slope(DD) 6693.97
Curve(DDS) -115.167
Heated Basement (/ft) | R-0
R-5 4ft -17.59 72.98
R-5 8ft -19.69 60.33
R-10 4ft -19.14 63.65
R-10 8ft -22.38 44.13
Intercept .000
Slope(DD) 4647.95
Curve(DDS) -49.181 | Crawl ' (/sf) | R-0
'R-11 flr -28.23 .96
R-19 flr -33.10 -2.20
R-30 flr -36.19 -4.21
R-38 flr -36.89 -4.67
R-49 flr -38.92 -5.99
Intercept -9.016
Slope(DD) 6212.77
Curve(DDS) -135.112 | Window U-value (/sf) 1-Pane .00 153.47 2-Pane -14.65 74.19 3-Pane -19.63 47.26 R-10 -25.48 15.59 | Slope(DD) 6706.98
Curve(DDS) -33.858
171.44 MBtu
57.40 MBtu
5.55 MBtu | | Pittsburgh PA WYEC | I | Deita Component
(MBtu) (KBtu) | Ceiling (/sf) R-0 .00 34.52 R-7 -31.83 13.85 R-11 -36.91 10.55 R-19 -41.47 7.59 R-22 -43.25 6.43 R-30 -45.64 4.88 R-38 -47.08 3.94 R-49 -48.37 3.10 R-60 -49.21 2.56 | Slope(DD) 71Ø6.66
Curve(DDS) -216.717
Slab (/ft) | R-0 -20.25 56.96
R-5 2ft -25.68 24.25
R-6 4ft -27.28 14.61
R-10 2ft -26.68 18.22
R-10 4ft -28.92 4.73
Intercept -23.426
Slope(DD) 8774.71
Curve(DDS) -148.899 | nheated Basement (/sf | R-0
R-11 fir -27.51 1.43
R-19 fir -21.88 -1.41
R-30 fir -34.69 -3.24
Intercept -8.146
Slope(DD) 6674.42
Curve(DDS) -552.094 | Infiltration (/sf flr) ELF Ach .0007(.78) .00 18.98 .0005(.58) -8.50 13.46 .0003(.35)-16.88 8.02 | Slope/.001ELF 26.428
Curve/.001ELF .974
Base Load =
Typical Load =
Residual Load = | | | Cooling Load | Delta Component
(MBtu) (KBtu) | Wall (/sf) R-0 .00 13.03 R-7 -2.06 6.54 R-11 -2.35 6.62 R-13 -2.73 4.41 R-19 -2.92 3.82 R-27 -3.26 2.77 R-34 -3.46 2.13 | Slope(DD) 2783.15
Curve(DDS) -67.079
Heated Basement (/ft) | 0 | Craw! (/sf) | R-0
R-11 flr -1.24 5.61
R-19 flr -1.25 4.93
R-30 flr -1.96 4.42
R-38 flr -2.02 4.31
R-49 flr -2.22 3.98
Intercept 3.142
Slope(DD) 1772.09
Curve(DDS) -172.836 | Window U-
1-Pane
2-Pane
3-Pane
R-10 | Slope(DD) 1320.79
Curve(DDS) -8.073
50.59 MBtu
31.80 MBtu
9.81 MBtu | |--------------------------|--------------|----------------------------------|--|--|---|-------------------------|---|--|---| | ing Series Two | 0 | Delta Component
(MBtu) (KBtu) | Ceiling (/sf) R-0 R-0 R-7 R-11 R-11 R-12 R-13 R-22 R-26 R-36 R-36 R-36 R-36 R-36 R-36 R-36 R-3 | Slope(DD) 4392.25
Curve(DDS) -104.590
Slab (/ft) | R-0
R-5 2ft -4.39 7.52
R-5 4ft -4.41 6.69
R-10 2ft -4.43 6.19
R-10 4ft -4.46 5.02
Intercept .000
Slope(DD) 2107.37
Curve(DDS) -120.365 | Unheated Basement (/sf) | R-0
R-11 flr -2.27 3.91
R-19 flr -2.37 3.74
R-30 flr -2.44 3.63
Intercept 3.260
Slope(DD) 533.04
Curve(DDS) -85.576 | Infiltration (/sf flr)
ELF Ach
.0007(.51) .00 3.96
.0005(.37) -1.47 2.74
.0003(.22) -2.85 1.59 | Slope/.001ELF 5.042
Curve/.001ELF .886
Base Load = Typical Load = Residual Load = | | MApartment Prototype Sid | eating Load | Delta Component
(MBtu) (KBtu) | Wall
R-0 .00 6.04
R-7 -1.21 2.23
R-11 -1.38 1.68
R-13 -1.53 1.21
R-19 -1.69 .97
R-27 -1.69 .69
R-34 -1.75 .52 | Slope(DD) 561.96
Curve(DDS) 104.252
Heated Basement (/ft) | R-0
R-5 4ft -2.57 7.95
R-5 8ft -2.60 6.95
R-10 4ft -2.61 6.78
R-10 8ft -2.65 5.28
Intercept 3.690
Slope(DD) 76.13
Curve(DDS) 9.920 | L | R-0
'R-11 flr -2.06 1.25
R-19 flr -2.30 .88
R-38 flr -2.40 .67
R-38 flr -2.50 .51
Intercept .256
Slope(DD) 459.53
Curve(DDS) 78.671 | WindowwU-value (/sf) 1-Pane .00 17.80 2-Pane -1.70 6.03 3-Pane -2.03 3.70 R-10 -2.43 .96 | Slope(DD) 383.24
Curve(DDS) 11.027
14.53 MBtu
4.31 MBtu
2.18 MBtu | | Phoenix AZ WYEC | Ξ | Delta Component
(MBtu) (KBtu) | Ceiling (/sf) R-0 .00 9.97 R-1 -4.52 2.43 R-12 -5.08 1.56 R-22 -5.23 1.56 R-30 -5.42 .93 R-49 -5.63 .58 R-60 -5.69 .48 | Slope(DD) 1279.69
Curve(DDS) 67.698
Slab (/ft) | 2ft -2.67
4ft -2.80
2 ft -2.80
8 4ft -2.80
Intercept -2.81
Slope(DD) -3
Curve(DDS) 11 | nheated Basement (/sf | R-0
R-11 flr -2.58 .39
R-19 flr -2.65 .27
R-3Ø flr -2.7Ø .19
Intercept0Ø7
Slope(DD) 259.41
Curve(DDS) -12.7Ø2 | Infiltration (/sf flr) ELF Ach .0007(.57) .00 1.47 .0005(.41)98 .66 | Slope/.001ELF667
Curve/.001ELF 3.959
Base Load =
Typical Load =
Residual Load = | | | | Component
(KBtu) | 1.8
1.8 | . o. 4. | 3.30
2.4
2.4 | 284.17 | 2 + | | (/sf) | 22.1.1
2.1.8
2.1.8
2.1.8
4.0
4.0
4.0
4.0
4.0
4.0
4.0
4.0
4.0
4.0 | 4.00 | (/sf
-3.5
-2.81
-1.82 | 330.80
7.488 | | |--------------|------------|---------------------|---|----------------|----------------------------------|------------------------|----------|--|----------
---|--|---|-----------------------|-------------------------------| | | þe | Delta Co
(MBtu) | 9.6 | 1 1 | 9 45
7 48
4 50 | (00)
(00) | D 0 | | | 88.
84.
62.
86. | cept
(00)
(00s) | | - (sgg)
- (gg) | 8tu
Btu
Btu | | | ooling Lo | • | Wa - R - 0 | | R-19
R-27
R-34 | Slop | Heated B | 4848 c-1 | Crawl | R-0
R-11 flr
R-19 flr
R-30 flr
R-38 flr | -49 flr
Inte
Slop
Curv | Window U-
1-Pane
2-Pane
3-Pane
R-10 | Slope | 8.28 MB
4.88 MB
2.08 MB | | | ပိ | omponent
(KBtu) | 244 | | | 999 | (/ft | . 69 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - | ; (/sf) | .04
.88
1.19
1.38 | 1.93Ø
755.75
75.521 | (/sf flr)
19
28
23 | -1.146
1.250 | Load = Load = | | es Two | | Delta Co
(MBtu) | ing
-1.4 | 2.4 | -2.03
-2.17
-2.25 | -2.33
-2.33
(DD) | | 95
89
88
84
84
60b) | Basement | 66
16
.02 | Intercept
Slope(DD) -
Curve(DDS) | 8 8 8
5 6 8 | .001ELF
.001ELF | Base
Typica
Residua | | Seri | | | 9-7- | 770 | * & & & a | 40 0 - | Slab | R-6
R-5
2ft
R-10 2ft
R-10 4ft
Inte
S-00 Cury | Unheated | R-11 flr
R-19 flr
R-30 flr | Inte
Slop
Curv | Infiltra
ELF Acl
.0007(.56
.0005(.36 | Slope/.6
Curve/.6 | | | ype Siding | | mponent
(KBtu) | (/sf)
32.00
14.92 | 4.00 | ் தா | 836.51
20.978 | (/ft) | 149.11
88.95
72.28
76.28
51.45
618.02
-36.553 | (/sf) | 14 H 1 H 0 | 23.3 | (/sf)
137.32
59.86
37.78
11.80 | 100.35
7.625 | | | nt Prototype | Pe | Delta Cor
(MBtu) | 9.4. | -6.18
-7.06 | -8.2 | e (DD) 6
e (DDS) | asement | -8.61
-10.42
-10.92
-10.83
-11.54
rcept
e(DD) | | .000
-10.66
-12.43
-13.53 | -14.50
(DD) 5
(DDS) - | .000
-11.15
-14.34
-18.07 | (00)
(008) | MBtu
MBtu
MBtu | | MApartment | eating Loa | | ₩
 | 8-11
8-13 | 100 | Slop
Curv | Heated B | R-6
R-5
R-5
8-16
R-16
Inft
Cury | Crawi | R-11 fr
R-130 fr
R-30 fr | Intervention | Window U-
1-Pane
2-Pane
3-Pane
R-10 | Slope | 77.22 N
22.82 N
1.69 N | | WYEC | ř | omponent
(KBtu) | 35. | . w w | 4.6.0 | 2.
5351.
-74.Ø | (/ft) | 72.
37.
27.
31.
17.
-10.8
8637. | t (/sf | 7.46
2.46
54 | -3.817
4527.69
454.252 | (/sf flr)
17.17
11.82
6.82 | 21.395
4.48Ø | Load II | | rgh PA | | Delta (
(MBtu) | fing .00 | -16.8 | 6 -18.39
8 -18.92
9 -19.35 | 3 -19.6
•(DD) | م | -10.91
-11.96
-12.26
-12.15
-12.58
-12.58
(DD)
-10.58 | E . | -8.61
-11.61
-12.70
-13.41 | Intercept
Slope(DD)
Curve(DDS) | Ach
(81)
(58) -6.43
(36)-12.42 | Ø1ELF
Ø1ELF | Base
Typical
Residual | | Pittsburgh | | | C R R R C C C C C C C C C C C C C C C C | 7 7 7 | ω n 4 | 9 0 5 | Slat | 55 2f
56 4f
10 2f
10 4f
Int
Slo | nheate | R-6
R-11 fr
R-19 fr
R-3Ø fr | Inte
Slop
Curv | | Slope/.Ø.
Curve/.Ø | | | | coling Load | Delta Component
(MBtu) (KBtu) | Wall (/sf) R-0 .00 2.19 R-752 1.11 R-1159 .95 R-1376 .73 R-1975 .62 R-2782 .46 R-3487 .36 | Slope(DD) 464.39
Curve(DDS) -10.590
Heated Basement (/ft) | 79 1.
84
85
85
85
00) -9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9. | Crawl (/sf) | R-0 .00 1.42
R-11 flr .37 2.04
R-19 flr .44 2.15
R-30 flr .56 2.36
R-38 flr .59 2.40
R-49 flr .67 2.54
Intercept .2.54
Slope(DD) .499.35
Curve(DDS) 48.468 | Window U-value (/sf. 1-9) 2-Pane .00 -1.2 3-Pane .158 R-10 .2331 | Slope(DD) -138.93
Curve(DDS) 2.522
9.53 MBtu
5.70 MBtu
2.05 MBtu | |------------------------|-------------|----------------------------------|--|--|--|-------------------------|--|--|--| | ing Series Two | ŭ | Delta Component
(MBtu) (KBtu) | Ceiling (/sf) R-6 R-7 -1.53 1.77 R-11 -1.78 1.36 R-19 -2.09 .99 R-20 -2.09 .85 R-38 -2.20 .66 R-38 -2.27 .54 R-49 -2.40 .32 | 00 00 042
00 00 00 00 00 00 00 00 00 00 00 00 00 | R-0
R-5 2ft -1.24 -9.72
R-5 4ft -1.24 -9.72
R-10 2ft -1.23 -9.47
R-10 4ft -1.17 -7.97
Intercept -4.722
Slope(DD) -1102.62
Curve(DDS) 44.735 | Unheated Basement (/sf) | R-6
R-11 flr18 1.12
R-19 flr .00 1.42
R-30 flr .12 1.62
Intercept 2.151
Slope(DD) -727.25
Curve(DDS) 63.887 | Infiltration (/sf flr) ELF Ach .0007(.50) .00 .14 .0005(.38)06 .09 .0003(.22)11 .05 | Slope/.001ELF .125
Curve/.001ELF .104
Base Load =
Typical Load =
Residual Load = | | Mid Town Prototype Sid | eating Load | Delta Component
(MBtu) (KBtu) |
Wall
R-0
R-7
R-1
R-11
R-13
R-13
R-13
R-19
R-19
R-19
R-19
R-27
R-27
R-27
R-34
R-34
R-34
R-34
R-34
R-34
R-34
R-34
R-34
R-34
R-34
R-34
R-34
R-34
R-34
R-34
R-34
R-34
R-34
R-34
R-34
R-34
R-34
R-34
R-34
R-34
R-34
R-34
R-34
R-34
R-34
R-34
R-34
R-34
R-34
R-34
R-34
R-34
R-34
R-34
R-34
R-34
R-34
R-34
R-34
R-34
R-34
R-34
R-34
R-34
R-34
R-34
R-34
R-34
R-34
R-34
R-34
R-34
R-34
R-34
R-34
R-34
R-34
R-34
R-34
R-34
R-34
R-34
R-34
R-34
R-34
R-34
R-34
R-34
R-34
R-34
R-34
R-34
R-34
R-34
R-34
R-34
R-34
R-34
R-34
R-34
R-34
R-34
R-34
R-34
R-34
R-34
R-34
R-34
R-34
R-34
R-34
R-34
R-34
R-34
R-34
R-34
R-34
R-34
R-34
R-34
R-34
R-34
R-34
R-34
R-34
R-34
R-34
R-34
R-34
R-34
R-34
R-34
R-34
R-34
R-34
R-34
R-34
R-34
R-34
R-34
R-34
R-34
R-34
R-34
R-34
R-34
R-34
R-34
R-34
R-34
R-34
R-34
R-34
R-34
R-34
R-34
R-34
R-34
R-34
R-34
R-34
R-34
R-34
R-34
R-34
R-34
R-34
R-34
R-34
R-34
R-34
R-34
R-34
R-34
R-34
R-34
R-34
R-34
R-34
R-34
R-34
R-34
R-34
R-34
R-34
R-34
R-34
R-34
R-34
R-34
R-34
R-34
R-34
R-34
R-34
R-34
R-34
R-34
R-34
R-34
R-34
R-34
R-34
R-34
R-34
R-34
R-34
R-34
R-34
R-34
R-34
R-34
R-34
R-34
R-34
R-34
R-34
R-34
R-34
R-34
R-34
R-34
R-34
R-34
R-34
R-34
R-34
R-34
R-34
R-34
R-34
R-34
R-34
R-34
R-34
R-34
R-34
R-34
R-34
R-34
R-34
R-34
R-34
R-34
R-34
R-34
R-34
R-34
R-34
R-34
R-34
R-34
R-34
R-34
R-34
R-34
R-34
R-34
R-34
R-34
R-34
R-34
R-34
R-34
R-34
R-34
R-34
R-34
R-34
R-34
R-34
R-34
R-34
R-34
R-34
R-34
R-34
R-34
R-34
R-34
R-34
R-34
R-34
R-34
R-34
R-34
R-34
R-34
R-34
R-34
R-34
R-34
R-34
R-34
R-34
R-34
R-34
R-34
R-34
R-34
R-34
R-34
R-34
R-34
R-34
R-34
R-34
R-34
R-34
R-34
R-34
R-34
R-34
R-34
R-34
R-34
R-34
R-34
R-34
R-34
R-34
R-34
R-34
R-34
R-34
R-34
R-34
R-34
R-34
R-34
R-34
R-34
R-34
R-34
R-34
R-34
R-34
R-34
R-34
R-34
R-3 | Slope(DD) 6050.60
Curve(DDS) -21.560
Heated Basement (/ft) | R-0
R-5 4ft -9.13 77.84
R-5 8ft -9.71 63.34
R-10 4ft -9.60 66.09
R-10 8ft -10.43 45.34
Intercept .000
Slope(DD) 4602.86
Curve(DDS) -35.206 | Crawl (/sf) | R-0 .00 20.41 R-11 flr -10.44 3.01 R-19 flr -12.19 .09 R-38 flr -13.27 -1.72 R-49 flr -14.23 -3.32 Intercept -6.054 Slope(DD) 5566.98 Curve(DDS) -79.355 | Window U-value (/sf) 1-Pane .00 138.62 2-Pane -11.06 61.82 3-Pane -14.33 39.09 R-10 -18.18 12.37 | Slope(DD) 5261.05
Curve(DDS)387
82.20 MBtu
25.06 MBtu
1.52 MBtu | | Pittsburgh PA WYEC | Ť | Delta Component
(MBtu) (KBtu) | Ceiling (/sf) R-Ø .00 36.01 R-7 -13.22 13.98 R-11 -15.32 10.46 R-19 -17.22 7.31 R-22 -17.20 7.31 R-30 -18.81 4.65 R-38 -19.36 3.74 R-49 -19.83 2.96 R-60 -20.13 2.46 | Slope(DD) 6726.25
Curve(DDS) -110.195
Slab (/ft) | R-0 -9.96 57.09 R-5 2ft -11.29 23.84 R-5 4ft -11.66 14.59 R-10 2ft -11.52 18.09 R-10 4ft -12.01 5.84 Intercept -18.541 Slope(DD) 7347.53 Curve(DDS) -59.963 | nheated Basement (/sf | R-Ø -7.13 8.52
R-11 flr -10.87 2.29
R-19 flr -12.11 .22
R-3Ø flr -12.91 -1.11
Intercept -4.792
Slope(DD) 5Ø56.Ø4
Curve(DDS) -479.643 | Infiltration (/sf flr)
ELF Ach
.0007(.81) .00 17.31
.0005(.58) -6.46 11.93
.0003(.36)-12.50 6.89 | Slope/.001ELF 21.666
Curve/.001ELF 4.376
Base Load = Typical Load = Residual Load = | | | ng Load | Delta Component
(MBtu) (KBtu) | | -0 .00 1.1 | -727 .5 | -13 | -1939 .3 | R-2743 .23 | -3445 | | Slope(DD) 226.35
Curve(DDS) -3.244 |)t (/f+ | | 6 79 | 4ft70 -1.7 | 8 4 ft = .78 = 1.7 | 8 8ft - 68 -1.2 | Intercept
Slope(DD) -1 | w (/st | | 1.60 1.6
1.7 .43 1.7 | 0 fir .47 1.83 | 2. 1 to 1 1 1 to 2 1 1 to 3 | Intercept 2.07 | DD) -186.3 | w U-value (/sf | | -Pane .14 -1.1 | ane .20 | -113.3 | .65 MBtu
.32 MBtu
81 MBtu | 10. | |---------------------------|------------|----------------------------------|-----------|----------------|-----------------|----------------------------------|--------------------------------|------------------------|----------------------------------|-----------|--|-----------------------|----------------|-------------------------------|--------------------|---|---------------------|---------------------------------------|-------------------------|---------------|---|-----------------------------|---|-------------------|--|-----------------------------------|-----------------------|----------------|-----------|---|--|-----| | g Series Two | Cooling | Delta Component
(MBtu) (KBtu) |) | -7 - 08 - 7- | -11 -1.04 | -19 -1.17 | -22 -1.23 | -36 -1.36
-38 -1.35 | R-49 -1.39 .26 | -60 -1.42 | Slope(DD) 604.26
Curve(DDS) -28.442 | Slab (/ft) Hea | | tt92 -7.24 R | -5 4ft81 -4.4 | -10 2ft83 -4.99 R | -10 4ft77 -3.49 R | 187
.82
527 | ment (/ | C 10 - | 2 - N | -30 flr .19 1.37 R-3
R-3 | 4-8 | ntercept 1.863 | Slope(UU) -675.87
Curve(DDS) 58.447 | (/sf flr) Win | Ach
(.47) .00 = 06 | 4)0308 | (.20)0208 | Slope/.001ELF375
Curve/.001ELF .417 | Base Load = 5 Typical Load = 3 Residual Load = 3 | 3 | | Mid Town Prototype Siding | ating Load | Delta Component
(MBtu) (KBtu) | - 6 | -7 -9.62 18. | -11 -10.99 15. | -13 -12.60 12. | -13 -13.40 10.
-27 -14 81 7 | -34 -15.67 5. | | | Slope(DD) 7439.82
Curve(DDS) -47.623 | Heated Basement (/ft) | | -/./4 152./
ft -10.06 94.7 | -5 8ft -10.76 77.2 | -10 4ft -10.62 80.7 | Totono - 11.03 55.4 | ercept
pe(DD) 5426
ve(DDS) -41. | Crawi (/sf) | -0 .60 23.0 | -11 fir -12.43 2.3 | 20 -3
20 -3 | -49 fir -17.08 -5.3 | rcept -8.76 | urve(DDS) -135.36 | Window U-value (/sf) | -Pane .00 171.4 | -13.57 77.2 | -10 | Slope(DD) 6623.85
Curve(DDS) ~4.899 | 99.28 MBtu
31.20 MBtu
2.86 MBtu | | | Portland ME WYEC | | Delta Component
(MBtu) (KBtu) | ø
74,7 | -7 -16.00 17.0 | -11 -18.56 12.7 | -13 -20.65 6.9
-22 -21.68 7 F | -30 -22.78 5.7 | -38 -23.45 4.5 | -49 -24.03 3.6
-60 -24.41 9.9 | | Slope(DD) 8236.49
Curve(DDS) -146.711 | Slab (/ft) | -0 -11.12 68.2 | ft -12.77 26.9 | -5 4ft -13.23 15.4 | -10 21c -13.06 19.7
-10 4ft -13 70 3 7 | Intercept -28.39 | (00) 9286
(00S) -1Ø1. | Unheated Basement (/sf) | -0 -7.74 10.1 | R-11 flr -12.56 2.15
R-19 flr -14.1957 | -30 flr -15.24 -2.3 | topopt - 7 16 | Slope(DD) 6667.52 | urve(DDS) -640.45 | Infiltration (/sf flr)
ELF Ach | (.76) .00 20.6 | (.34) - 14.77 | | Slope/.001ELF 26.291
Curve/.001ELF 4.479 | Base Load = Typical Load = Residual Load = | | | | | | | | • | | | | | |-------------|--------------|---------------------|--|--|--|-----------|---
---|---| | | | omponent
(KBtu) | (/sf)
1.16
1.62
.52
.48
.34 | 260.40
-8.417
(/ft) | 1.26
.38
.086
.086
.088
.981 | (/sf) | 1.14
1.56
1.62
1.72
1.77
1.839
187.09 | (/sf)
.20
.14
.09 | 16.09
325 | | | Cooling Load | Delta Co
(MBtu) | Wall
R-0
R-7
R-1162
R-1385
R-1992
R-27 -1.01
R-34 -1.07 | Slope(DD)
Curve(DDS)
Heated Basement | R-0 -1.55
R-5 4ft -1.71
R-5 8ft -1.72
R-10 4ft -1.76
R-10 8ft -1.75
Intercept Slope(DD)
Curve(DDS) | Crawl | R-0
R-11 flr .65
R-19 flr .74
R-30 flr .86
R-38 flr .89
R-49 flr .97
Intercept .97
Slope(DD) . | Window U-value 1-Pane .00 2-Pane01 3-Pane02 R-1003 | Slope(DD)
Curve(DDS)
7.61 MBtu
1.57 MBtu
-1.78 MBtu | | | Ü | Component
(KBtu) | (/sf)
2.45
5 .999
11 .76
3 .55
2 .36
2 .38
8 .23 | 521.58
-18.164
(/ft) | 2 -1.67
2 -1.67
3 -1.03
9 -1.39
8 -72
-462.33
16.075 | it (/sf) | . 14
. 98
. 1.23
1.39
1.824
-593.01 | (/sf flr)
.24
.19 | se Load = Load = Load = = | | es Two | | Deita Co
(MBtu) | 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 | ope(DD)
rve(DDS)
ab | t -2.8
t -1.9
t -1.9
t -1.9
t -1.9
ve(DD) | d Basemen | fir -1.55
fir -38
fir .38
Intercept
Slope(DD) | tration
Ach .00
.47) .00
.34)08 | 001ELF
001ELF
Typic
Residu | | ng Seri | | | 0 | SION SIN | R-6
R-5
R-1
R-1
R-1
R-1
R-1
R-1
R-1
R-1
R-1
R-1 | Unheated | R-0
R-11
R-19
R-30
Int | Infilt
ELF A.
.0007(
.0005(.: | Slope/.
Curve/. | | ype Siding | | Component
(KBtu) | (/sf)
39.43
19.46
16.61
13.11
11.38
8.19
6.24 | 8171.02
156.213
(/ft) | 123.14
84.04
69.52
73.56
50.91
.000
5147.78 | (/sf) | 21.19
88
-4.71
-7.16
-7.72
-9.34
13.623
589.69 | (/sf)
189.13
91.46
58.26
19.22 | 269.54
41.873 | | / Prototype | pe | Delta Co
(MBtu) | | e(DD)
e(DDS) -
asement | -12.19
-18.68
-21.09
-20.42
-24.18
(OD)
(DD) | | .000
-33.99
-39.88
-43.66
-44.62
-47.01
rcept
-7.00
e(DD) 7 | U-value
ine .000
ine -18.05
ine -24.18 | e(DD) 8
e(DDS) -
MBtu
MBtu
MBtu | | One Story | Heating Los | | X X X X X X X X X X X X X X X X X X X | Slop
Curv
Heated B | R-6
R-5
R-5
R-16
R-10 4ft
R-10 8ft
Intervence
Curve | Crawi | R-6
R-11
R-13 f-r
R-38 f-r
R-38 f-r
Inter
Slope
Curve | Window U 1-Pan 2-Pan 3-Pan R-10 | Slope
Curve
207.17
71.97
10.68 | | WYEC | H | omponent
(KBtu) | (/sf)
11.73
12.75
12.75
12.75
7.77
7.77
8.77
3.75 | 8581.06
260.244
(/ft) | 64.82
24.76
12.71
17.17
-35.291
0502.82 | | 13.27
24
-3.36
-5.67
-11.875
8429.10
687.412 | (/sf flr)
22.45
15.94
9.51 | 31.396
. 974
. Load = | | ME | | Delta Co
(MBtu) | ing
 | e(DD)
e(DDS) - | -21.87
-28.52
-30.52
-29.78
-32.59
rcept
e(DD) | Basement | -12.15
-32.26
-37.86
-41.36
-41.36
(DD) | tion
.000
-10.03 | .001ELF
.001ELF
Base
Typica
Residua | | Portland | | | C C C C C C C C C C C C C C C C C C C | Slop
Slab | R-6
R-5
2ft
R-10 2ft
R-10 2ft
Inte | Unheated | R-0
R-11 f-
R-19 f-
R-30 f-
Inte | Infiltra
ELF Ach
.0007(.75)
.0005(.54)
.0003(.33) | Slope/.e | | | | elta Component
(MBtu) (KBtu) | | ۍ
پ | | | .30 | .40 | . 57 | ? | (DD) 433.76
(DDS) -17.818 | ement (/ft | | .41 -12.1 | 46 -12.4 | 52 -12.8 | 4 | 1.63 | 2 | . 60 40
. 56 03
. 58 02
. 60 01 | • |
 | (DD) 3.53
(DDS) -15.845 | | >
! | . 60 25
61 36
. 61 26
63 26 | -38 | | |---------------|--------------|---------------------------------|------|------------------|------------|----------|---------|------------|--------|--------------|------------------------------|----------------|----------|------------------------|----------------------------|-----------------------|--------------------------------------|--------------|-----------|--|-------------|------------------------|----------------------------|----------------|-----------|--|------------------------------|--| | | Cooling Load | å | | — e × | 8-7
7-8 | 7 | 7 | ∵ (| R-2/ | • | Slope | Heated Bas | | | -5 8ft | -10 4ft | Inter
Slope |)
- | | R-11 flr
R-19 flr
R-30 flr | -38 4- | -48 TIF
Inter | 0 0 | Window U- | , | 2-Pane
3-Pane
R-10 | 50 | 6.3
6.39
8.39
8.39
8.39
8.30 | | _ v. | | (MBtu) (KBtu) | | 787)
1880 3.3 | 2.97 1.4 | 3.44 1.1 | 8. 78.5 | 7. 00.4 | 4.47 | -4.62 .34 | 791.9 | (/ft) | ·
> | .14 -16.5
.96 -15.5 | .89 -15.0 | .93 -15.3
80 -14 F | | nent (/sf | | 4267
1852
0342 | | 15 |) -347.51
S) 23.855 | n (/sf flr) | 5 | 12 .02
1801 | ELF195
ELF .487 | Base Load =
ypical Load =
sidual Load = | | ding Series] | | - 0 0 | | 9 | R-7 | 7, | ٦° | 7 6 | 'n | R-49
R-60 | Slope (D | Slab | | دد | -5 4ft | -10 27t
-10 4ft | Sio | 70 | 8 | R-11 flr
R-19 flr
R-30 flr | | Intercep | Slope(DD)
Curve(DDS) | ltratio | ⋖ͺ | .0003(.28) | Slope/.001E
Curve/.001E | R | | rototype Si | | Component | 4 | 24 | 43 12.1 | ო ნ | 90 | 43 5.0 | 75 3.8 | | 4974.69
-61.254 | t (/ft) | | Ø6 172.6
84 149.8 | 63 139.0
88 143 6 | 59 127.2 | 92.364
3513.81
-38.182 | (/sf) | 00 15 |) 00 00 4 00 | 2.0 | .00 | . B | (/sf) | 0 106.1 | ro 4 o | 3959.09
2.313 | | | One Story Pro | Heating Load | Deita
(MBti | Wall | R-0 | -7 -14 | -11 -16 | -19 -20 | -27 -22 | -34 -2 | | Slope(DD)
Curve(DDS) | Heated Basemen | | ft6. | -5 8ft -11.
-10 4ft -10 | -10 8ft -13. | Intercept
Slope(DD)
Curve(DDS) | Crawl | 89 | R-11 flr -22.8
R-19 flr -26.6
R-30 flr -29.6
R-38 flr -29.5 | -49 fir -31 | tercept | 9 0
0 2 2 | Window U-value | -Pane | 2-Pane -10.9
3-Pane -14.1
R-10 -17.8 | Slope(DD)
Curve(DDS) | 130.27 MBtu
51.61 MBtu
-2.47 MBtu | | WYEC | | elta Component
(MBtu) (KBtu) | _ | .00 27 | 0.4/ 16 | 3.19 | 4.61 5 | 6.50 3 | 7.65 | 39.27 2.03 |) 5574.50
)S) -157.161 | (/ft) | 40 146 4 | 16 117.8 | .97 112.9 | .13 99.9 | 74.
7444
-128. | sement (/ṣf) | 6.06 18.6 | 6.34
4.24
6.75 | | 5999 | -478.03 | on (/sf flr) | .00 12.2 | 6.12 8.29
1.66 4.69 | LF 14.220
LF 4.708 | Base Load ::
ypical Load ::
sidual Load :: | | Portland OR | | Ded
W) | · | | - [| -19 | -22 - | -30 | 88 | 1 009 | Slope(DD)
Curve(DDS) | Slab | 20 | ب
د د | -10 2ft | -10 4ft | intercept
Slope(DD)
Curve(DDS) | Unheated Bas | -0 | R-11 flr -2
R-19 flr -2
R-3Ø flr -2 | | Intercept
Slope(DD) |) D | ه د | (89.) (90 | 005 (. 50) -
003 (. 30) -1 | Slope/.001EL
Curve/.001EL | T _y . | | | ng Load | Delta Component
(MBtu) (KBtu) | Wall (/sf) R-0 .00 1.16 R-715 .69 R-1117 .62 R-1323 .44 R-1925 .35 R-2727 .30 | Slope(DD) 316.15
Curve(DDS) -18.667
ated Basement (/ft) | 4ft58 -1.
8ft59 -1.
8 4ft59 -1.
8 8ft49 -1.
Intercept6
Slope(DD) -100.
Curve(DDS) 2.1 | wl (/sf) | 1 fir .33 1.33
9 fir .33 1.33
8 fir .46 1.53
8 fir .46 1.55
1 fir .49 1.59
9 fir .49 1.59
Intercept 1.730
Slope(DD) -261.50
Curve(DDS) 14.551 | 1-Pane .00 -2.34
2-Pane .11 -1.61
3-Pane .19 -1.05
R-10 .2840 | Slope(DD) -175.75
Curve(DDS) 3.300
4.71 MBtu
2.71 MBtu
1.19 MBtu | |-----------------------------|------------|----------------------------------|---|--|--|-----------------------------|---|--|--| | Series Two | Cooling | Delta Component
(MBtu) (KBtu) | Ceiling (/sf) R-0 .00 2.53 R-788 1.06 R-11 -1.02 .82 R-19 -1.15 .61 R-20 -1.21 .52 R-38 -1.28 .39 R-49 -1.37 .25 R-60 -1.39 .21 | Slope(DD) 582.61
Curve(DDS) -26.28Ø
Slab (/ft) Hea | R-0
R-5
R-5
R-5
R-5
R-10
R-10
R-10
R-10
R-10
R-10
R-10
R-10 | Unheated Basement (/sf) Cra | R-0
R-11 flr07 .66 R-1:
R-19 flr .06 .87 R-15
R-30 flr .13 1.00 R-36
Intercept 1.351
Slope(DD) -482.57
Curve(DDS) 41.668 | Infiltration (/sfflr) Win
ELF Ach
.0007(.47) .00 .00
.0005(.34)0201
.0003(.20)0302 | Slope/.001ELF104
Curve/.001ELF .156
Base Load =
Typical Load =
Residual Load = | | MApartment Prototype Siding | ating Load | Delta Component
(MBtu) (KBtu) | Wall (/sf) R-0 .00 38.86 R-7 -6.54 18.23 R-11 -7.47 15.30 R-13 -9.53 11.94 R-27 -9.98 7.38 R-34 -10.55 5.60 | Slope(DD) 7197.82
Curve(DDS) 5.056
Heated Basement (/ft) | R-Ø -9.53 178.18 R-5 4ft -11.65 107.34 R-5 8ft -12.27 86.84 R-1Ø 4ft -12.15 90.84 R-1Ø 8ft -13.01 62.18 Intercept .000 Slope(DD) 6007.42 Curve(DDS) -40.720 | Crawl (/sf) | R-0
R-11 flr -12.73 3.57
R-19 flr -14.8802
R-30 flr -16.27 -2.34
R-38 flr -16.59 -2.87
R-49 flr -17.50 -4.39
Intercept
-7.816
Slope(DD) 7071.35
Curve(DDS) -139.250 | Window U-value (/sf)
1-Pane .00 170.02
2-Pane -13.75 74.50
3-Pane -17.71 47.04
R-10 -22.36 14.74 | Slope(DD) 6250.25
Curve(DDS) 7.191
93.42 MBtu
28.52 MBtu
3.00 MBtu | | Portland ME WYEC | He | Delta Component
(MBtu) (KBtu) | Ceiling (/sf) R-0 | Siope(DD) 7811.62
Curve(DDS) -109.681
Siab (/ft) | R-0 -12.29 86.01
R-5 2ft -13.60 42.51
R-5 4ft -13.99 29.51
R-10 2ft -13.84 34.51
R-10 4ft -14.37 16.68
Intercept -20.126
Slope(DD) 10770.26
Curve(DDS) -159.019 | Unheated Basement (/sf) | R-0 -9.53 8.91
R-11 flr -13.45 2.38
R-19 flr -14.86 .02
R-30 flr -15.77 -1.49
Intercept -5.726
Slope(DD) 5840.46
Curve(DDS) -582.407 | Infiltration (/sf flr) ELF Ach .0007(.76) .00 20.61 .0005(.56) -7.57 14.30 .0003(.34)-14.73 8.33 | Slope/.001ELF 26.520
Curve/.001ELF 4.167
Base Load = Typical Load = Residual Load = | | | מ
נ | Wall (/sf) R-0 .00 1.82 R-795 .97 R-11 -1.09 .85 R-13 -1.30 .66 R-19 -1.40 .57 R-27 -1.57 .42 R-34 -1.67 .33 | Slope(DD) 433.76
Curve(DDS) -17.818
Heated Basement (/ft) | | 400000000 | Window U-value (/sf) 1-Pane .0025 2-Pane .0130 3-Pane .0120 R-10 .0308 | Slope(DD) -38.68
Curve(DDS) 1.11Ø
9.91 MBtu
5.39 MBtu
.21 MBtu | |---|----------------------------------|--|--|--|--|---|---| | ing Series Two | Delta Component
(MBtu) (KBtu) | Ceiling (/sf) R-0 3.34 R-7 -2.97 1.41 R-11 -3.44 1.10 R-22 -4.06 .70 R-38 -4.32 .54 R-38 -4.47 .44 R-49 -4.62 .34 R-60 -4.71 .28 | Slope(DD) 791.95
Curve(DDS) -38.553
Slab (/ft) | R-8 | R-0 -1.41 -1.31
R-11 fir4267
R-19 fir1852
R-30 fir0342
Intercept159
Slope(DD) -347.51
Curve(DDS) 23.855 | Infiltration (/sf flr) ELF Ach .0007(.60) .00 .10 .0005(.43)12 .02 .0003(.26)1801 | Slope/.001ELF195
Curve/.001ELF .487
Base Load =
Typical Load =
Residual Load = | | One Story Prototype Sid
Heating Load | | Wali
R-Ø
R-7 -14.43 12.14
R-11 -16.49 10.31
R-13 -19.03 8.05
R-27 -22.29 6.93
R-34 -23.75 3.85 | Siope(DD) 4974.69
Curve(DDS) -61.254
Heated Basement (/ft) | R-Ø -6.06 172.63
R-5 4ft -9.84 149.86
R-5 8ft -11.63 139.08
R-10 4ft -10.88 143.60
R-10 8ft -13.59 127.27
Intercept 92.364
Slope(DD) 3513.81
Curve(DDS) -38.182 | R-0
R-11 flr -22.86 7.70
R-19 flr -26.69 5.21
R-30 flr -29.04 3.68
R-38 flr -29.58 3.34
R-49 flr -31.13 2.33
Intercept .000
Slope(DD) 4723.67
Curve(DDS) -63.833 | Window U-value (/sf) 1-Pane .00 106.13 2-Pane -10.95 46.88 3-Pane -14.14 29.62 R-10 -17.89 9.32 | Slope(DD) 3959.09
Curve(DDS) 2.313
130.27 MBtu
51.61 MBtu
-2.47 MBtu | | Portland OR WYEC | Delta Component
(MBtu) (KBtu) | Ceiling (/sf) R-0 | Slope(DD) 5574.50
Curve(DDS) -157.161
Slab (/ft) | R-0
R-5 2ft -15.16 117.82
R-5 4ft -16.77 108.12
R-10 2ft -15.97 112.94
R-10 4ft -18.13 99.92
Intercept 74.229
Slope(DD) 7444.40
Curve(DDS) -128.954 | R-0 -6.06 18.61 R-11 fir -20.34 9.34 R-19 fir -24.24 6.80 R-30 fir -26.75 5.17 Intercept 5922.28 Curve(DDS) -478.039 | Infiltration (/sf flr)
ELF Ach
.0007(.68) .00 12.26
.0005(.50) -6.12 8.29
.0003(.30)-11.66 4.69 | Slope/.001ELF 14.220
Curve/.001ELF 4.708
Base Load =
Typical Load =
Residual Load = | | | | Component
(KBtu) | (/sf)
1.83
1.03
.91
.70
.60
.50 | 472.58
-24.443
(/ft) | -17.60
-17.85
-17.35
-17.35
-16.271
-112.97 | (/sf) | 37
01
.01
.01
.01
.01
.000
30.11 | (/sf)
-1.40
91
60 | -97.65
1.689 | |------------|--------------|---------------------|--|-----------------------------|---|------------|---|--|--| | | פַּ | Delta Co
(MBtu) | 00 | e(DD)
e(DDS)
asement | 48
49
49
49
47
47
47
47
47
47
48 | | .000
.22
.23
.23
.23
.23
.23
.000
(00) | . 88
. 87
. 12 | e(DD)
e(DDS)
MBtu
MBtu
MBtu | | | Cooling Load | | W R R R R - 0 - 111 R R - 131 R R - 131 R R - 131 R R - 232 R - 342 R 34 | Slop
Curv
Heated B | R-0
R-5
84t
R-10 4ft
R-10 8ft
S-10 8ft
Curve | Crawl | R-11 fr
R-13 fr
R-30 fr
R-30 fr
R-49 fr
R-49 fr
R-49 fr
R-40 fr
Slope | Window U. 1-Pane 2-Pane 3-Pane R-10 | Slope
Curve
6.67 M
4.86 M
2.09 M | | | Coo | omponent
(KBtu) | (/sf)
3.33
1.36
1.04
1.04
1.04
1.33
1.39
1.31 | 715.13
25.998
(/ft) | -25.60
-24.10
-23.60
-23.85
-22.85
20.766
655.04 | (/sf) | -1.17
36
27
041
7.038 | sf flr)
00
04
05 | .417
.417
Load = Load = Load = | | o
* | | elta (
(MBtu) | -1.18
-1.37
-1.54
-1.54
-1.76
-1.76
-1.76 | (00)
(00) | 80
73
73
73
69
69
(DD) | Basement | 48
08
.01
.03
.06
.00
.00
.00
.00
.00
.00
.00
.00
.00 | tion (/
00
05
05 | IELF
Base
Typical
Residual | | Series | | ۵ | C. B. C. | Slope
Curve
Slab | -6
-5
-15
2ft
-10 2ft
None
Curve | inheated 6 | -0
-11 flr
-19 flr
-30 flr
Inter
Slope
Curve | Infiltrat
ELF Ach
0007(.60)
0005(.43)
0003(.26) | Slope/.001
Curve/.001 | | guib | | | | | ~ ~ ~ ~ ~ ~ | 5 | œ œ œ œ | | | | S | | omponent
(KBtu) | (/sf)
24.59
11.34
9.46
7.30
6.23
4.50
3.44 | 4351.71
40.950
(/ft) | 201.47
166.47
153.72
158.22
140.72
104.690
3491.21 | (/sf) | 20.68
6.81
4.55
3.23
3.23
2.93
2.06
4099.59 | (/sf)
93.36
35.99
22.43
6.48 | 32.476 | | Prototype | _ | elta (
(MBtu) | .00
-6.31
-7.21
-8.24
-8.75
-9.57
-10.08 | (DD)
(DDS)
sement | -4.35
-5.75
-6.26
-6.08
-6.78
(00)
(DDS) | | .000
-8.32
-9.68
-10.47
-10.65
-11.17
copt
(DD) | . 00
-8.26
-10.21
-12.51 | (00) 2
(00s) 8
Btu
Btu | | d Town | ing Load | ۵ | Wall
R-7
R-11
R-11
R-13
R-27
R-27 | Slope
Curve
eated Bas | -6
-5 4ft
-16 8ft
-16 8ft
Slope
Curve | - × a r | 111 f 1
119 f 1
130 f 1
149 f 1
149 f 1
10 f 1
10 f 1
10 f 1 | indow U-
1-Pane
2-Pane
3-Pane
R-10 | Slope
Curve
60.51 M
28.58 M
1.49 M | | . <u>.</u> | Heat | ţ. | .f.)
778
222
68
68
68
88
88
91 | 59 C | 27-7-28-1
RRRRR | o · | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ | -r.) W. | 04 DDD | | WYEC | | ompone
(KBt | (/sf
28.2
33.8
8.2
8.2
6.6
6.6
6.6
9.9
4.7
1.3
6.6
2.2
2.2
2.2
2.2
1.3
1.3
1.3
1.3
1.3
1.3
1.3
1.3
1.3
1.3 | 5190.6
-56.82
(/ft | 4 159.2
9 130.4
5 121.4
7 125.9
4 114.2
92.15
6212.0
63.23 | nt (/sf | 5 13.4
6 7.5
9 5.6
2 4.4
4.8
1.14
4582.7 |
11.0
11.0
7.1
3.8 | 16.756
7.085
19.086
cal Load | | OR | | elta C
(MBtu) | -10.6
-10.6
-12.3
-13.8
-14.3
-15.1
-15.5 | (\$00)
(00) | -6.0
-7.1
-7.5
-7.3
-7.8
-7.8
(00) | Ваѕешег | -4.3
-7.8
-8.9
-9.7
-9.7
(00) | tion
(-4.62)
-8.56 | T E S | | Portland | | ۵ | 0 | Slope
Curve
Slab | R-6
R-5 2ft
R-5 4ft
R-10 2ft
R-10 4ft
Interce
Slope(I | Unheated | R-0
R-11 flr
R-19 flr
R-30 flr
Interco
Slope((| Infiltrat
ELF Ach
.0007(.70)
.0005(.51)
.0003(.32) | Slope/.0011
Curve/.0014 | | | ooling Load | Delta Component
(MBtu) (KBtu) | Wall (/sf) R-0 .00 1.82 R-725 1.03 R-1129 .92 R-1335 .72 R-1938 .62 R-2743 .47 R-3446 .37 | Slope(DD) 488.64
Curve(DDS) -27.866
Heated Basement (/ft) | -6 4ft40 -185 8ft41 -1810 4ft42 -1810 8ft42 -18. Intercept7.77 Slope(DD) -59. Curve(DDS) 1.23 | R-0 | () | Slope(DD) -105.42
Curve(DDS) 2.763
5.50 MBtu
3.80 MBtu
1.05 MBtu | |--------------------------|--------------|----------------------------------|--|---|--|---|---|--| | ing Series Two | J | Delta Component
(MBtu) (KBtu) | Ceiling (/sf) R-0 .00 3.27 R-7 -1.16 1.33 R-11 -1.35 1.02 R-12 -1.51 .75 R-22 -1.58 .63 R-38 -1.73 .39 R-49 -1.78 .31 R-60 -1.81 .25 | Slope(DD) 702.21
Curve(DDS) -25.403
Slab (/ft) | | I fir16 88 87 88 88 83 83 83 83 83 Slope(DD) -289.2 Curve(DDS) 24.89 | Infiltration (/sf flr)
ELF Ach
.0007(.60) .00 .04
.0005(.43)04 .00
.0003(.26)0601 | Slope/.001ELF125
Curve/.001ELF .260
Base Load =
Typical Load =
Residual Load = | | MApartment Prototype Sid | Heating Load | Delta Component
(MBtu) (KBtu) | Wall
R-0 .00 24.51
R-1 -4.26 11.06
R-13 -5.54 7.03
R-19 -5.88 5.98
R-27 -6.40 4.31
R-34 -6.73 3.28 | Slope(DD) 4119.19
Curve(DDS) 81.420
Heated Basement (/ft) | R-0
R-5 4ft -6.93 189.01
R-5 8ft -7.38 174.17
R-10 4ft -7.23 179.01
R-10 8ft -7.85 158.34
Intercept 116.116
Slope(DD) 4073.19
Curve(DDS) -31.104 | 11 flr -8.51 6.8
19 flr -9.87 4.51
8 flr -10.67 3.23
8 flr -11.38 2.09
Intercept .000
Slope(DD) 4077.34
Curve(DDS) 3.83 | Window U-value (/sf) 1-Pane .00 91.80 2-Pane -8.28 34.27 3-Pane -10.16 21.28 R-10 -12.35 6.00 | Slope(DD) 2461.00
Curve(DDS) 38.495
56.57 MBtu
24.75 MBtu
1.94 MBtu | | Portland OR WYEC | ¥ | Delta Component
(MBtu) (KBtu) | Ceiling (/sf) R-0 .00 28.53 R-7 -10.63 10.82 R-11 -12.33 7.99 R-19 -13.85 5.45 R-22 -14.37 4.58 R-30 -15.06 3.42 R-49 -15.81 2.18 R-60 -16.01 1.84 | Slope(DD) 4936.64
Curve(DDS) -20.992
Slab (/ft) | R-0
R-5 2ft -7.88 157.51
R-5 4ft -8.19 147.17
R-10 2ft -8.04 152.34
R-10 4ft -8.44 139.01
Intercept 113.042
Slope(DD) 7416.76
Curve(DDS) -106.752 | R-0
R-11 fir -8.49 6.85
R-19 fir -9.50 5.18
R-30 fir -10.14 4.11
Intercept 1.118
Slope(DD) 4118.02
Curve(DDS) -403.488 | nfiltrati
LF Ach
007(.70)
005(.53)
003(.32) | Slope/.001ELF 10.166
Curve/.001ELF 7.449
Base Load = Typical Load = Residual Load = | | | | Component
u) (KBt.) | (המפינו) | ٥ | .m | e . | 6. | ,
, | | .81 | | 825.98 | .05 | (/ft) | ω, | ם מ | · - | · · | . 000
-97.17 | | (18) | Η, |
 | 00.0 | α | ' ;; | <u>ت</u> 0 | | 5 | 4.1 | 2.38
1.54 | Ġ | 238.74 -3.060 | | | |-------------------------|--------------|----------------------------------|-------------|---------------|----------------|-----------------|----------------|----------------------------------|----------------------------------|------------------|------------------------------------|--|-----------------------|-----------------|----------------------------|---|--------------------|---------------------------------------|--------------------------------------|-------------------------|---------------|-------------------|--|------------------|--|--------------------------------------|-------------------|-----------------------------------|-----------------|-------------------|--|--------------------|--|-----------|-------------------------| | | Cooling Load | Delta
(MBt | | e | 91 | -7 | -11 -2 | 2- 51- | -19 -2 | R-34 -3.1 | | Slope (DD) | 9 | Heated Basement | -2.5 | -5 41t -2.5 | -10 4ft -2.6 | -10 8ft -2.5 | Intercept
Slope(DD)
Curve(DDS) | | | 9. | 4. 719 61- | R-30 flr .40 | 40 417 | Intercept | Curve (DDS) | Window U-value |) | Pane - | 3-Pane 1.49 | - 16 | Slope(DD)
Curve(DDS) | 7.6 MB | 4.59 MBtu
-4.02 MBtu | | ing Series Two | | Delta Component
(MBtu) (KBtu) | • | ering as (/sf | 2.8 28.8 2.5 | -11 -9.58 9.6 | -19 -10.76 1 9 | -22 -11.21 1.6 | -30 -11.82 1.9 | -38 -12.18 1.0 | R-49 -12.51 .79
R-60 -12.73 .65 | Slope(DD) 1799.17
Curve(DDS) -49 899 | | - | -3.52 -6.6
ft -3.25 -6. | -5 4ft -3.18 -4.5 | -10 2ft -3.20 -4.7 | -10 41t -3.08 -3.9
Intercept -2.35 | pe(DD) -691
ve(DDS) 24. | Unheated Basement (/sf) | : : | -11 fir -1.10 8 | R-19 flr71 1.11 | -35 iir -,46 1.2 | • | Intercept 1.705
Slope(DD) -587.69 | urve(DDS) 46.25 | Infiltration (/sf flr) | Ach Ach Aa | (.37)17 | (.22) - | | Slope/.001ELF .357
Curve/.001ELF .162 | Base Load | 0 0
∪ ⊃ | | One Story Prototype Sid | Heating Load | Delta Component
(MBtu) (KBtu) |) | 0 | -7 -16.93 14.4 | -11 -19.34 12.3 | -13 -22.38 9.6 | -19 -23.88 8.2 | -27 -26.42 6.0 | -34 -27.98 4.6 | | Slope(DD) 5963.95
Curve(DDS) -88.683 | Heated Basement (/ft) | | 6 4ft -14. | -5 8ft -16.42 46
-10 4ft -16 61 41 | -10 8ft -18.78 34 | Intercept | 4Ø31
-39. | Crawl (/sf) | .60 15. | -11 fir -22.26 1. | -19 fir -26.10 -1.6
-30 fir -28.33 -2 | 84 -2.8 | 148 TIT 160.31 13.8
Intercept 14 14 | pe (DD) 4634 | Curve(DDS) -66.37 | Window U-value (/sf) | -Pane .00 122.0 | -Pane -12.01 57.0 | 3-Pane -15.86 36.23
R-10 -20.38 11.75 | (40) | Slope(UU) 5034.34
Curve(DDS) -15.597 | 139.75 | , 4 | | Reno NV TMY | | Delta Component
(MBtu) (KBtu) | eiling (/sf | -0 34.0 | -7 -31.47 13.6 | -11 -36.50 10.3 | -13 -41.01 7.4 | -22 -42.70 0.3
-36 -46 11 4 1 | -38 -45.11 4./
-38 -46 E2 2 0 | R-49 -47.78 3.65 | -60 -48.59 2.5 | Slope(DD) 6952.34
Curve(DDS) -203.490 | Slab (/ft) | | ft -22 | -3 416 -23.30 6.5
-10 2ft -23.39 6.3 | -10 4ft -24.567 | cept -17.85 | urve(DDS) -66.27 | Unheated Basement (/sf) | -0 -8.75 10.1 | 1.43 1.9 | -30 fir -2 | | ntercept -5.68 | Slope(DD) 5314.57 | 701.75%- (500) | Infiltration (/sf flr)
ELF Ach | (.67) .00 12.2 | .48 | (.29) - 11:31 4:9 | 1000/ 001E E 15 E1 | rve/.001ELF | Base Load | sidual Loa | | | Cooling Load | Delta Component
(MBtu) (KBtu) | · - | R-G 00 (/St) | -7- | -11 -1.06 2 | -13 -1.29 1 | -19 -1.41 1 | -27 -1.56 1 | -34 -1.66 | | Slope(DD) 1071,49
Curve(DDS) -49 044 | ement (/ft | | -083 -5.6 | -5 4ft80 -4.8 | -5 8ft77 -4.1 | ft79 -4.6 | -10 STt/3 -3.1
Intercept .00 | Δ.> | (40/) | | -11 fir .24 | 24 | -38 flr .25 | -49 flr .26 1 | ~ ~ ~ ~ | Window II-wall | | -Pane .00 2.2 | 2-Pane18 .95
3-Pane23 .60
R-10 | 1. 63. (00) agolS | rve(DDS) | 14.04 MBtu
6.65 MBtu
1.40 MBtu | |------------------------|--------------|----------------------------------|------------|-------------------------------|----------------|----------------|----------------|----------------|----------------|-----------------|----------------|---|-----------------------|---------------|-------------------|--------------------|--------------------|---------------------|---------------------------------|-----------------------------|-------------------------|--------------|--------------------|----------------------------------|--|-----------------|--|------------------------|-----------------|-----------------------|---|--|-----------|--| | iding Series Two | 0 | Delta Component
(MBtu) (KBtu) | /) ouilie | 6 00. | -7 -3.32 3 | -11 -3.84 2 | -19 -4.32 2 | -22 -4.50 1 | -36 -4.75 1 | R-49 -5 36 1.12 | -60 -5.1 | Slope(DD) 1976.33
Curve(DDS) -69.043 | Slab (/ft) | | -1.35 -18.6 | -b 21t -1.25 -16.1 | -0 41C -1.23 -15.6 | -10 4ft -1.19 -14 6 | Intercept -12.21 | ope(UU) -1Ø2
rve(DDS) 34 | Unheated Basement (/sf) | -68 - 23 - 2 | -11 fir34 .4 | R-19 flr22 .64
R-30 flr14 .77 | | | Slope(DD) -462.22
Curve(DDS) 33.359 | itration (/sf f | Ach Car | (.51) .00 | نِن | .001ELF .04 | urve/.001 | Base Load = Typical Load = Residual Load = | | Mid Town Prototype Sid | Heating Load | Delta Component
(MBtu) (KBtu) | ali (/sf | | -/ -/.12 12.3 | -11 -6.13 10.1 | 7.7 62.81 61- | -27 -10 71 4 7 | -34 -11.24 3.6 | | | Slope(DD) 4564.94
Curve(DDS) 93.491 | Heated Basement (/ft) | | 5 4ft. +7 21 46 9 | -5 8ft -7.55 38 3 | -10 4ft -7.60 37.0 | -10 8ft -8.03 26.3 | cept
(DD) 280 | urve(DDS) -8.10 | Crawl (/sf) | -0 .00 15.1 | -11 flr -7.71 2.2 | i w | -38 flr -10.79 -1.1
-49 flr -10.04 -1.0 | Intercept -3.77 | Slope(DD)
3583.71
Curve(DDS) 20.451 | Window U-value (/sf) | -Pane . 88 91 8 | -Pane -8.19 34.7 | 3-Pane -10.08 21.65
R-10 -12.31 6.18 | (DD) 2546 | 29.68 | 62.26 MBtu
13.99 MBtu
8.81 MBtu | | Reno NV TMY | Í | Delta Component
(MBtu) (KBtu) | iling (/sf | -6 .60 34.7
-7 -12 01 12 2 | -11 -14 97 0 9 | -19 -16.82 6.7 | -22 -17.46 5.6 | -30 -18.31 4.2 | -38 -18.82 3.4 | -49 -19.23 2 | -00 -19.50 2.2 | Slope(DD) 6124.71
Curve(DDS) -44.099 | Slab (/ft) | 8 00 80 81 81 | t -9.14 -1.4 | -5 4ft -9.30 -5.4 | -10 2ft -9.31 -5.6 | -16 41t -9.51 -10.6 | ercept -21.
pe(DD) 3938 | urve(DDS) 91.79 | Unheated Basement (/sf) | -6 -5.34 6.2 | R-19 fir -9.00 .15 | -30 flr -9.567 | | -3.37 | Slope(DD) 3530.93
Curve(DDS) -323.054 | Infiltration (/sf flr) | (.67) .00 9.1 | .0005(.49) -4.19 5.70 | (.3Ø) -7.55 2.9 | Slope/.001ELF 7.083
Curve/.001ELF 8.646 | | Base Load =
Typical Load =
Residual Load = | | | | omponent
(KBtu) | >m (| 1.7 | 1.6 | œ. κ. | | 852.55
-26.872 | (/ft) | -2.83
-2.16
-1.66
-1.99
-1.33
-000
.000 | (/sf) | 1.88
1.33
1.33
1.33 | 1.31
36.4
19.03 | | 60 | 00 | |---------------|---------|--------------------|-------------------------|--------------|---------|--------------|----------------|----------------------------|---------|---|---------|--|--------------------------------------|-------------------------------|---|--| | | _ | elta (
(MBtu) | 60.0 | 29.1 | ל | თ თ | | (S00)
(00) | sement | 68
65
65
65
68
64
64
(DD) | | | i ø | a lue
20. – | 32
41 | (CCS)
Btu
Btu | | | ng Load | | ₩
R-6 | 77 | 77 | R-27
R-34 | | Slope | ated Ba | 6 4ft
5 8ft
10 4ft
10 8ft
Inter
Slope
Curve | - M | | 9 fir
Inter
Slope
Curve | o ≰
-Pan
-Pan | 6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 2 2 2 3
2 4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 | | | Cooling | | | | | | | | ž | ~~~~~ | ؾ | 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 | Λ | <u>:-</u>
≽ | | | | | | omponent
(KBtu) | (/sf)
9.25 | • • | | | . 7.0
. 7.0 | 973.92
69.800 | (/ft) | -8.16
-5.33
-5.33
-5.49
-2.264
990.48 | (/sf) | - 14
48
.67
.89 | 1.150
479.90
44.463 | /sf flr)
.28
.18 | . 25
80
80
80
80
80 | | | Two | | elta Con
(MBtu) | 9.6 | | . 4. | -4.73 | ø | (00) 1
(00S) - | | 78
78
76
74
7 | sement | 68
31
20 | | | 22
ELF
ELF | Base
ypical
sidual | | eries T | | De.I | eiling
-Ø | 0 | . ~ . | 9 m e | n & | 0
0
0
0
0
0 | a
P | 2ft
2ft
2ft
4ft
ntercept
lope(DD)
urve(DDS) | d
Ba | | Intercept
Slope(DD)
Curve(DDS) | tratio
Ach
.51)
.37) | - [5] | ac | | Sei | | | <u>.</u> | ck d | : oż: c | ¥ & (| γ.φ. | S | S | R-6
R-6
R-10
R-10
R-10
In 2
Cu | Unheate | R-6
R-11 f
R-19 f
R-30 f | CEST | Infilt
ELF A
0007(.) | | | | ding | | | | | | | | | | | | | | • • | • | | | S | | mponent
(KBtu) | (/sf)
27.07
11.89 | | | | | 234.49
48.374 | (/ft) | 58.34
48.34
46.51
32.84
.000
618.22 | (/sf) | V 66 1 1 4 | · 60 · 1~ | (/sf)
90.23
32.07 | 19.8
5.3
7.17 | :
 | | rototype | | ್ದಿ | | 20.00 | φ | - 4 | | 411 | i
t | 79
56
86
91
32 | | 943.5.4 | , m | | | | | ۵. | ъ | Delta
(MBtı | 7 | r, d | | | | (00)
(008) | аѕешеп | -8.
-8.
-8.
-9.
(00)
(00) | | 90000 | (00)
(00)
(00) | | -12
-12
(00)
(00)
(00) | Btr.
Btr. | | MApartment | eol 6 | | Wall
R-0
R-7 | R-11
R-13 | -10 | 3.6 | | Slop | e d | 84
84
10
10
10
10
10
10
10 | _ | | Sint | > 4.0° | 71 - S | .10
.10
.10
.10 | | MApa | Heating | | | | | | | | Heat | 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 | Cra₩ | RR-11
R-11
R-11
R-38
8 8 8 8 8 | r | ¥ing | 7 CC | 128
8 | | > - | ř | nent
Btu) | /sf)
3.51
2.49 | -: -: | ∹ α | . 6 | . 63 | 1.16
.255 | /ft) | 2.34
1.18
1.18
5.84
5.81
5.81
2.83
2.83 | /sf) | 5.86
2.03
17 | . 574
4. 63
. 638 | flr) | . 49- |
 0 0 0
 0 0 0 | | TMY | | Ompon
(KB | 1 30 | w 4 | ٥. | - co - | r oo | 549 | 3 | 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 | ut: (| 0 0 50 11 | 33.04
-323 | (/sf
(/sf
(%s) | യത | ca – L
ca – L
ca – L | | | | Delta C
(MBtu) | | 14.
16. | 17. | -18.2 | | (800)
(008) | | -9.8
-9.8
-9.9
-9.9
-18.1
(00)
(00) | аѕеше | - 10.9
- 10.9 | Cept
(00)
(00S) | 6 4.
8 . 2 . 2 | -/.»
ELF
ELF | Typ: | | Ž | | o
O | . <u>-</u> | O | ω r | | . 50 | 0
7
0
0 | d e | 70 t + + + + + + + + + + + + + + + + + + | ed B | <u> </u> | nterce
lope (E
urve (D | trati
Ach
.67) | • | œ | | eno l | | | 2,4,4 | مخ مخ | άď | د مخا ما | c oc | S | S | -6
-5
-5
-18
-18
1n
In
S-
Cu | heat | -111 f
-119 f
-30 f | rs 3 | Infil
ELF
ØØØ7 (| 000 | | | æ | | | | | | | | | | ထံ ထဲ ထဲ ထဲ ထဲ | 5 | 5 4 4 E | | Hmøø | ် ကပ် | | | | | ient
itu) | sf)
:91 | 96. | . 29 | 60. | .64 | | . 86
88
88 | ft) | . [| .92 | .73 | 533 | 0000
.37
267 | sf) | | 91 | . 8.1
. 8.1 | 8 <i>0</i> | 82 | 32
93 | Ç | , , , | . 1. 6. 6. 6. 6. 6. 6. 6. 6. 6. 6. 6. 6. 6. | Ω. | 76
12 | | |-----------|-------------|-------------------------|----------------|---------|--------------|--------------|--------------|-------|------------------------|------------|-------|---------|------------|-----------------|-----------------------------|----------|-------|--|----------------|------------------|-------------------|----------------|-------------|--------|---|-------|-------------------------|---------------------------------------| | | | lta Compon
MBtu) (KB | @ | -2.19 1 | 2.95 | .17 | . w | | (DD) 816
(DDS) -16. | sement (/ | 21 | 74 | 77 | 200 | cept
(DD) 137
(DDS) | ٥ | 5 | 25 25 25 25 25 25 25 25 25 25 25 25 25 2 | , es . | თ 10
0 0 | 2.5 | (DDS) -35.1 | lue (/s | 98 | 56 3.
79 2. | 3 | (00) 325.
(00S) -3.1 | 222 | | | ooling Load | o
O | Wa
R-0 | | ٠, | R-19
R-97 | l m | | Slope (Curve) | Heated Bas | 8 | . د | -5 8ft | -10 41t | L 03 00 | Crawi | - 1 | 111 11 | 1 1. | -38 fl
-49 fl | Inter | - 0 D | Window U-va | -Pan | 2-Pane
3-Pane | } | Slope (D
Curve (D | 26.60 MBtu
7.39 MBtu
-3.26 MBtu | | | Ü | omponent
(KBtu) | >* | ຕິດ | - | <u></u> | • | • • | 1749.57
-55.762 | (/ft) | -6.5 | 9.5 | 8.4 | 10.0 | -3.95/
-521.72
25.501 | t (/sf) | 99 | 1.65 | .0 | | 2.541 | 48.35 | (/sf fir) | | . 34 | | . 486
87 | Load = Load = | | es Two | | Delta Co
(MBtu) | 9 | -7.7 | -10.6 | -10.5 | 8 -11.44 | -12.0 | (00)
(e(00)) | | -5.3 | -5.26 |
 | 5.1 | (00)
(00)
(000) | Ваѕешел | 3.2 | -1.68 | -1.0 | |) of | (SQ | 50 | ø. | 1 1 | i v | 001ELF | Bas
Typica
Residua | | ng Seri | | | Ce: | -1 | 7 | 7 5 | € 4 | φ | Slop | Slab | 9- | R-5 2ft | 1.0
2.0 | -16 | Shope | Unheated | R-0 | R-11 flr | -30 fl | | Interce | 25 | Infiltr | ELF Ac | .0005(.37) | , | Curve/. | | | ipis e | | omponent
(KBtu) | (/sf)
30.33 | 14.8 | 000 | 6 8
. 1. | 4.7 | | 6119.81
-89.324 | (/ft) | 100.5 | 66.7 | 57.8 | 4
0.6 | 3995.1 <i>0</i>
-37.699 | (/sf) | 17 | | 1 1 | ï | -7.
463 | | (/sf) | 0.2 | 66.7 <i>0</i>
42.43
13.88 | 2 880 | -24.559 | | | Prototype | ס | Delta Co
(MBtu) | 9 | -17.45 | -22.9 | -24.4 | -28.8 | | pe(DD)
ve(DDS) | asement | -10.1 | | -17.2 | -20.1 | (SQQ)
• (DQS) | | | -25.27 | | -34. | cept
(DD) | <u>- (şaa)</u> | -value | 9. | e -13.59
e -18.08
-23.35 | (90) | • (SQQ) | Btu
Btu
Btu | | One Story | ating Loa | | ₩
- 8-10 | 1 1 | R-13 | R-19
R-27 | R-34 | | Slop | Heated B | 60 | R-5 4ft | -10 | -10 8ft | SCUT | Crawl | 9 | | W W | -49 + | Inter | 5 | Window U | -Pan | 2-Pan
3-Pan
R-18 | 2 | 7 > | 149.99 M
46.07 M
6.31 M | | WYEC | H
Ø | mponent
(KBtu) | (/sf)
31.65 | 9.0 | 0,0 | 04 | တို့ တဲ့ | m | 6501.41
196.052 | (/ft) | 4.7 | 14 90 | . 6. | 5.6 | 7398.48
100.445 | t (/sf) | 10.84 | 1.44 | ۲. | 1 | -7.158
5971.77 | 80.0 | (/sf fir) | 9 | 10.56
6.23 | 6 | 1.867 | e Load = Load = | | e City U | | Delta Com
(MBtu) | ø. | 33.8 | 38.0 | 41.8 | -43.20 | 45.1 | (00)
(000) | | ~ | -22.89 | Ö | -25.88
cept | (SQQ)
(QQ) | Ваѕетел | 10.1 | -24.60 | 31.0 | | sept
(DD) | (SOS) | tion | ø |) -13.59 | Ø1EL | ØIELF | Base
Typica
Residua | | Salt Lak | | | - 8-6
- 8-6 | 77 | ٠, د | 3 10 | R-38
R-49 | 9 | Slope | Slab | 9. | | -10 2f | -10 4ft
Inte | 0 F | Unheated | 9- | R-11 flr
R-19 flr | -3Ø fl | , | Interd
Slope | , Y | nfiltr
F | \sim | 603
603
603 | 1006/ | Curve/.0 | | | | · o = | | 0 | | | | | | | |---------------------------|----------------------------------|---|---|--|-------------------------|--|--|---|--| | | ponent
(KBtu) |
(/sf)
4.23
4.23
2.21
1.92
1.47
1.25
.94 | 959.92
32.114
(/ft) | 4.64
. 89
. 114
. 39
. 14
. 000
. 13.05
3.053 | (/sf) | 2.29
2.48
2.44
2.39
2.37
2.37
2.295
31.872 | (/sf)
4.62
2.19
1.39
1.39 | 195.40
770 | | | ooling Load | Delta Compo
(MBtu) (P | Wall
R-0
R-796
R-11 -1.10
R-13 -1.31
R-19 -1.42
R-27 -1.56 | Slope(DD)
Curve(DDS)
Heated Basement | R-0
R-5 4ft -1.34
R-5 8ft -1.33
R-10 4ft -1.36
R-10 8ft -1.37
Intercept Slope(DD)
Curve(DDS) | Crawl | R-0
R-11 flr .11
R-19 flr .09
R-30 flr .07
R-38 flr .06
R-49 flr .04
Intercept Slope(DD)
Curve(DDS) - | Window U-value
1-Pane .00
2-Pane35
3-Pane46
R-1060 | Slop
Curv | = 16.66 MBtu
= 8.92 MBtu
= 2.39 MBtu | | Š | ponent
(KBtu) | (/sf)
8.42
3.37
2.56
1.84
1.57
1.20
.99 | 726.82
51.728
(/ft) | -18.86
-18.36
-17.86
-18.11
-16.86
13.604
117.87 | (/sf) | 1.24
1.24
1.49
1.64
2.058
562.26 | /sf flr)
.39
.24
.13 | .333 | Coad | | Series Two | Delta Com
(MBtu) | Ceiling
R-6
R-7
R-11 -3.63
R-19 -3.95
R-22 -4.11
R-38 -4.43
R-49 -4.60
R-69 | Slope(DD) 1.
Curve(DDS) -{ | R-0
R-5
R-5
R-10
R-10
R-10
R-10
R-10
Intercept
Slope(DD) -1
Curve(DDS) | Unheated Basement | R-0
R-11 flr63
R-19 flr48
R-30 flr39
Intercept
Slope(DD)6
Curve(DDS) | Infiltration (/
ELF Ach
.0007(.52) .00
.0005(.37)17
.0003(.22)31 | Slope/.001ELF
Curve/.001ELF | Base
Typica
Residua | | Mid Town Prototype Siding |)
) | Wall (/sf) R-Ø . ØØ 28.82 R-7 -7.35 13.39 R-11 -8.40 11.19 R-13 -9.60 8.67 R-17 -11.19 5.35 R-34 -11.79 4.08 | Slope(DD) 5193.93
Curve(DDS) 30.672
Heated Basement (/ft) | R-Ø -6.03 112.12
R-5 8ft -7.91 65.12
R-10 4ft -8.42 52.37
R-10 8ft -9.03 37.12
Intercept .000
Slope(DD) 3516.87
Curve(DDS) -19.243 | Crawl (/sf) | R-0
R-11 flr -9.09 2.37
R-19 flr -10.6014
R-30 flr -11.49 -1.62
R-49 flr -11.69 -1.96
R-49 flr -12.27 -2.93
R-49 flr -12.27 -2.93
Slope(DD) 4625.22
Curve(DDS) -35.743 |) Window U-value (/sf)
1-Pane .00 117.19
2-Pane -9.87 48.65
3-Pane -12.48 30.55
R-10 -15.54 9.27 | Slope(DD) 3893.91
Curve(DDS) 20.647 | = 69.57 MBtu
= 18.68 MBtu
= 5.54 MBtu | | Salt Lake City U WYEC | Delta Component
(MBtu) (KBtu) | Ceiling (/sf) R-0 33.00 R-7 -12.16 12.74 R-11 -14.10 9.51 R-19 -15.84 6.60 R-22 -16.46 5.57 R-30 -17.28 4.20 R-38 -17.78 3.37 R-49 -18.20 2.67 R-60 -18.47 2.22 | Slope(DD) 6057.26
Curve(DDS) -82.847
Slab (/ft) | R-0 -8.63 47.12
R-5 2ft -9.86 16.37
R-5 4ft -10.16 8.87
R-10 2ft -10.06 11.37
R-10 4ft -10.47 1.12
Intercept -18.236
Slope(DD) 5333.59
Curve(DDS) 8.264 | Unheated Basement (/sf) | R-0 -6.03 7.47 R-11 flr -9.43 1.81 R-19 flr -10.5303 R-30 flr -11.24 -1.21 Intercept -4.463 Slope(DD) 4463.84 Curve(DDS) -416.520 | Infiltration (/sf flr) ELF Ach .0007(.78) .00 12.81 .0005(.57) -5.13 8.54 .0003(.34) -9.67 4.75 | Slope/.001ELF 13.999
Curve/.001ELF 6.146 | Base Load :
Typical Load :
Residual Load : | | | oling Load | Delta Component
(MBtu) (KBtu) | | /st
//st | 3.6 | 1.58 1.8 | -13 - 50 1 2 | 1.1 78 - 61- | -27 - 95 8 | n | • | Slope(DD) 853.79
Curve(DDS) -25.914 | t (/ft | | -5 4ft -1 12 2 6 | -5 8ft -1.12 3.4 | ft -1.15 2.7 | -10 8ft | Slope(DD) 182.27
Curve(DDS)131 | raw! (/sf | | -11 fir .14 2.2 | -19 flr .12 2.2 | -38 f r | -49 TIF .07 2.1
Intercent 2 40 | ope(DD) 16 | 10.15- (0.06) - 11.51 | | -Pane | 41 2.7 | -1072 | Slope(DD) 248.98
Curve(DDS) 1.420 | 71.7 | 14.57 MBtu
7.40 MBtu
.93 MBtu | |--------------------------|--------------|----------------------------------|-------------|-------------|---------------|---------------|--------------|------------------|--------------|--------------|----------------------------------|---|-----------------------|-----------------|--------------------|---------------------|----------------------------------|-------------------------|------------------------------------|---------------------------|--------------|-------------------------------------|--|---------------------|-----------------------------------|--|-------------------------|-----------------|-------------------|------------------|------------|---|-----------|-------------------------------------| | ding Series Two | 900 | Delta Component
(MBtu) (KBtu) | , , , , , , | 7 99 89- | -7 -3.08 3 | -11 -3.57 2 | -19 -4.02 1 | -22 -4.19 1 | -30 -4.42 1 | -38 -4.56 | R-68 -4.68 .77
R-60 -4.77 .63 | Slope(DD) 1765.28
Curve(DDS) -53.788 | Slab (/ft) H | -Ø -1.53 -10 ØF | -5 2ft -1.51 -9.38 | -5 4ft -1.49 -8.71 | ft -1.51 -9.21
ft -1.49 -0.20 | Intercept -6.402 | lope(UU) -638.8
urve(DDS) 27.89 | Unheated Basement (/sf) C | -0 -1.01 | 1.08 | -30 fir37 1.44 R | OC 01 | ntercept 1.822 | Slope(DD) -523.14
Curve(DDS) 46.580 | nfiltration (/sf flr) W | | 005(.37) - 21 | 803 (.22) | | Slope/.001ELF .312
Curve/.001ELF .469 | 400 | Typical Load | | MApartment Prototype Sid | Heating Load | Delta Component
(MBtu) (KBtu) | i/) | .00 28 | -7 -4.99 13. | -11 -5.71 10. | -13 -6.50 | 7 - 13 - 6.89 7. | 24 -1.53 5. | -04 -1.84 G. | | Slope(DD) 5009.67
Curve(DDS) 70.160 | Heated Basement (/ft) | -0 -7.51 137.5 | -5 4ft -9.26 79.5 | 81t -9.74 63.5 | -10 8ft -10.29 45.2 | rcept
a(DD) 426 | urve(DDS) -22.29 | Crawi (/sf) | -0 .00 19.4 | -11 flr -9.50 3.5
-19 flr -11.07 | R-30 flr -12.0161
R-38 flr -12.2297 | -49 flr -12.83 -1.9 | ntercept -4.41 | ope(DD) 4841.6
rve(DDS) -38.61 | Window U-value (/sf) | -Pane .00 116.0 | -Pane -10.01 46.5 | e -12.52 | -16.46 8.6 | Slope(DD) 3603.12
Curve(DDS) 30.008 | .45 MB | 16.76 MBtu
5.78 MBtu | | Salt Lake City U WYEC | | Delta Component
(MBtu) (KBtu) | s/) | -0 .00 32. | -/ -11.94 12. | 10 110 11 15 | -22 -16 14 5 | -36 -16 62 3 | -38 -17.40 3 | -49 -17.78 2 | -60 -18.03 2. | Slope(DD) 5637.50
Curve(DDS) -37.038 | Slab | 9.60 67.8 | -5 21c -10.00 34.5 | -10 2ft -10.78 28.7 | -10 4ft -11.14 16.5 | rcept -7.
8(DD) 6855 | Curve(DDS) -47.80 | nheated Basement (| -0 -7.51 6.8 | R-19 flr -11.32 .53 | -30 fir -11.965 | 4 4 - | -3.48
4070 F | urve(DDS) -399.6 | Infiltration (/sf flr) | 7(.78) .00 12.6 | 8885(.57) -5.1 | 3(.34) -9.62 4.5 | | Slope/.001ELF 13.270
Curve/.001ELF 6.771 | Base Load | lypical Load ≡
Residual Load ≈ | | Cooling Load | Delta Component
(MBtu) (KBtu) | Wall
R-0
R-7
R-11
R-13
R-19
R-19
R-19
R-27
R-27
R-34
R-34
R-34
R-34
R-34
R-34
R-34
R-34 | Slope(DD) 1130.28
Curve(DDS) -20.404
Heated Basement (/ft) | -0 -2.62 32.
-5 8ft -3.19 28.
-10 4ft -3.36 27.
-10 8ft -3.55 26.
Intercept 23.8 27.
Slope(DD) -2.00 Curve(DDS) -2.00 | rawi (/sf | R-10
R-11 flr69 4.75
R-19 flr -1.15 4.45
R-30 flr -1.50 4.22
R-38 flr -1.58 4.17
R-49 flr -1.81 4.02
Intercept 3.612
Slope(DD) 861.15
Curve(DDS) -107.771 |) Window U-value (/sf)
1-Pane .00 6.71
2-Pane72 2.81
3-Pane91 1.77
R-10 -1.14 .54 | Slope(DD) 227.17
Curve(DDS) 1.021
= 67.62 MBtu
= 31.37 MBtu
= 6.83 MBtu | |--|----------------------------------|---|--|--|-----------------------|---|--|---| | ng Series Two | Delta Component
(MBtu) (KBtu) | Ceiling (/sf) R-0 R-0 R-7 -9.66 3.96 R-11 -11.20 2.96 R-19 -12.59 2.06 R-22 -13.09 1.74 R-30 -13.09 1.74 R-38 -14.16 1.04 R-49 -14.48 R-50 -14.69 | Slope(DD) 1892.28
Curve(DDS) -27.914
Slab (/ft) | 2ft -7.55 2.7 4ft -7.94 .3 4ft -7.99 .6 8 2ft -8.642 8 4ft -8.031 Intercept -9.03 Slope(DD) -196.6 Curve(DDS) 39.59 | nheated Basement (/sf | R-0
R-11 flr -2.28 3.71
R-19 flr -2.28 3.71
R-30 flr -2.48 3.58
Intercept 3.403
Slope(DD) 267.86
Curve(DDS) -48.827 | Infiltration (/sf flr)
ELF Ach
.0007(.58) .00 5.25
.0005(.41) -2.11 3.88
.0003(.25) -4.38 2.41 | Slope/.001ELF 8.409
Curve/.001ELF -1.299
Base Load :
Typical Load :
Residual Load : | | One Story Prototype Sidi
ating Load | Delta Component
(MBtu) (KBtu) | Wall R-0 R-0 R-7 -5.36 R-7 -5.36 R-11 -6.12 R-13 -6.98 2.39 R-19 -7.40 2.01 R-27 -8.02 1.46 R-34 -8.40 1.13 | Slope(DD) 1390.55
Curve(DDS) 38.791
Heated Basement (/ft) | -6 4ft -7.90 13.7
-5 8ft -8.36 11.7
-10 4ft -8.35 11.7
-10 8ft -8.90 7.7
Intercept .90 7.7
Slope(DD) 632.7
Curve(DDS) .7 | raw! (/s | R-8
R-11 flr -7.51 1.74
R-30 flr -9.62 1.02
R-38 flr -9.33 .65
R-49 flr -9.71 .31
Intercept287
Slope(DD) 1144.73
Curve(DDS) 39.433 | Window U-value (/sf)
1-Pane .00 32.39
2-Pane -3.80 11.82
3-Pane -4.63 7.32
R-10 -5.61 2.03 | Slope(DD) 827.77
Curve(DDS) 15.115
= 44.47 MBtu
= 14.05 MBtu | | San Antonio TX WYEC
He | Delta Component
(MBtu) | Ceiling (/sf) R-0 .00 10.43 R-7 -9.86 4.03 R-11 -11.44 3.01 R-12 -12.85 2.09 R-22 -13.35 1.76 R-30 -14.03 1.32 R-38 -14.44 1.06 R-49 -14.77 .84 R-60
-14.98 .71 | Slope(DD) 1915.69
Curve(DDS) -26.286
Slab (/ft) | R-0 -7.98 13.34
R-5 2ft -9.28 5.51
R-5 4ft -9.53 4.00
R-10 2ft -9.47 4.37
R-10 4ft -9.76 2.62
Intercept .000
Slope(DD) 605.72
Curve(DDS) 53.422 | nheated Basement (/sf | R-0 -5.72 2.91 R-11 flr -8.56 1.06 R-19 flr -9.24 .62 R-30 flr -9.68 .33 Intercept409 Slope(DD) 998.31 Curve(DDS) -68.638 | Infiltration (/sf flr) ELF Ach .0007(.68) .00 3.82 .0005(.48) -2.17 2.41 .0003(.29) -3.95 1.26 | Slope/.001ELF 3.247 Curve/.001ELF 3.166 Base Load = Typical Load = Residual Load = | | | Cooling Load | Deita Component
(MBtu) (KBtu) | Wall (/sf) R-0 .00 6.23 R-7 -1.34 2.42 R-11 -1.53 2.02 R-13 -1.76 1.53 R-19 -1.88 1.28 R-27 -2.04 .95 R-34 -2.14 .74 | Slope(DD) 915.81
Curve(DDS) 10.507
Heated Basement (/ft) | -6 4ft -1.03 48.
-5 8ft -1.17 45.
-6 8ft -1.19 44.
-10 8ft -1.28 44.
Intercept -1.23 43.
Slope(DD) 150.
Curve(DDS) .4 | R-0 .00 4.95 R-11 flr11 4.77 R-19 flr25 4.56 R-30 flr23 4.56 R-38 flr23 4.57 R-49 flr22 4.59 Intercept 4.340 Slope(DD) 286.21 Curve(DDS) -32.451 | Window U-
1-Pane
2-Pane
3-Pane
R-10 | Slope(DD) -801.36
Curve(DDS) 24.356
37.96 MBtu
27.04 MBtu
12.42 MBtu | |------------------------|----------------|----------------------------------|---|---|---|--|---|---| | ding Series Two | ŭ | Deita Component
(MBtu) (KBtu) | Ceiling (/sf) R-0 R-0 R-7 -3.80 10.18 R-7 -3.80 10.18 R-19 -4.95 1.93 R-22 -5.12 1.63 R-38 -5.50 1.01 R-49 -5.50 1.01 R-49 -5.50 1.01 | Slope(DD) 1754.91
Curve(DDS) -6.526
Slab (/ft) | 2ft -3.06 -2.
4ft -3.07 -2.
Ø 2ft -3.07 -2.
Ø 4ft -3.05 -1.
Intercept .0
Slope(DD) -880.
Curve(DDS) 81.6 | R-0 -1.03 3.24 R-11 flr72 3.75 R-19 flr71 3.77 R-30 flr70 3.79 Intercept 3.783 Slope(DD) 24.62 Curve(DDS) -25.582 | Infiltration (/sf flr) ELF Ach .0007(.57) .00 4.64 .0005(.41) -1.38 3.49 .0003(.25) -2.93 2.20 | Slope/.001ELF 7.876
Curve/.001ELF -1.771
Base Load =
Typical Load =
Residual Load = | | Mid Town Prototype Sid | eating Load | Delta Component
(MBtu) (KBtu) | Wall
R-0
R-7
R-11 -2.52 3.30
R-13 -2.84 1.97
R-19 -3.80 1.64
R-27 -3.22 1.18
R-34 -3.35 .90 | Slope(DD) 1073.79
Curve(DDS) 74.554
Heated Basement (/ft) | R-6
R-5 4ft -3.16 14.11
R-5 8ft -3.26 11.61
R-10 4ft -3.26 11.61
R-10 8ft -3.38 8.61
Intercept 3.263
Slope(DD) 451.89
Curve(DDS) 4.919 | -0 | Window U-value (/sf) 1-Pane .00 27.22 2-Pane -2.63 8.95 3-Pane -3.13 5.47 R-10 -3.72 1.38 | Slope(DD) 544.64
Curve(DDS) 18.420
19.89 MBtu
7.05 MBtu
1.86 MBtu | | San Antonio TX WYEC | H ₀ | Deita Component
(MBtu) (KBtu) | Ceiling (/sf) R-Ø 10.60 R-7 -4.05 3.84 R-11 -4.70 2.77 R-19 -5.28 1.80 R-22 -5.45 1.51 R-30 -5.69 1.12 R-38 -5.83 .88 R-49 -5.93 .71 R-60 -6.00 .60 | Slope(DD) 1582.78
Curve(DDS) 34.543
Slab (/ft) | R-0
R-5 2ft -3.53 4.86
R-5 4ft -3.59 3.36
R-10 2ft -3.57 3.86
R-10 4ft -3.63 2.36
Intercept .000
Slope(DD) 553.25
Curve(DDS) 42.184 | 1 flr -2.58 1 9 flr -3.28 8 flr -3.48 Intercept0 Slope(DD) 665.6 Curve(DDS) -54.03 | Infiltration (/sf flr)
ELF Ach
.0007(.68) .00 2.95
.0005(.48) -1.51 1.69
.0003(.29) -2.62 .76 | Slope/.001ELF 1.291
Curve/.001ELF 4.167
Base Load = Typical Load = Residual Load = | | | omponent
(KBtu) | (/sf)
5.06
5.28
2.28
1.89
11.49
11.29
.91 | 866.42
13.678
(/ft) | 1.0.4.21.0.2 | (/sf)
3.91
4.06
3.86
3.77
3.77
3.443
3.443
3.443
489.24 | (/sf)
-1.94
-4.64
-3.16
-1.41 | 653.22
21.966 | |--------------------------|------------------------|---|-----------------------------|---|---|--|---| | | elta (
(MBtu) | -1.888
-1.018
-1.191
-1.199
-1.392 | (DD)
(DDS)
sement | 85
-1.02
-1.02
-1.05
-1.05
(00) | . 88
 | | • (DD) - • (DDS) MBtu MBtu | | ing Load | ۵ | Wat R-6 R-7 R-11 R-13 R-27 R-34 | Slope
Curve | SS Aft
10 Aft
10 Bft
Slope
Curve | 138 fr
-138 fr
-38 fr
-38 fr
-38 fr
Interc | indow U-versions 1-Pane 2-Pane 3-Pane R-10 | Slope
Curve
35.85 ME
25.79 ME | | Coolin | Component
(KBtu) | (/sf)
10.51
3.87
2.81
2.81
1.85
1.18
1.18
.95 | 57.77
9.462
(/ft) H | 7.56
7.33
7.73
7.73
7.65
7.65 | 2.51
3.00
3.00
3.07
3.07
8.3.07
8.3.122
53.85
2.964 | sf flr) W
4.83
3.66
2.32 | 8.354
2.083
Load =
Load = | | Two | elta Comp
(MBtu) (| 0
 | (00) 16
(00S) 1 | -2.46
-2.45
-2.46
-2.46
-2.43
ept
0D) -11 | asement
85
55
51
51
ept
 | ion (/
.000
-1.41
-3.01 | Base Cypical | | Series | ۵ | C R R R R R R R R R R R R R R R R R R R | Slope
Curve
Slab | 2ft
2ft
2ft
3 2ft
3 bec
Curve | Unheated B
R-8
R-11 flr
R-19 flr
R-3Ø flr
Interc
Slope(| Infiltrat
ELF Ach
.0007(.58)
.0005(.41)
.0003(.25) | Slope/.0011
Curve/.0011 | | e Siding | Component
(KBtu) | 7.65
2.97
2.36
2.36
1.69
1.99 | 847.67
Ø6.839
(/ft) | 25.
7.
7.
1.5. | (/sf)
6.27
1.68
1.09
.81
.74
.55
.118
802.39 | 25.78
7.94
4.81 | 32.50
0.613 | | : Prototype | elta (
(MBtu) | | (DD) 1
(DDS) 1
sement | -2.99
-3.48
-3.54
-3.54
-3.61
-3.61
(DD) | .000
-2.76
-3.11
-3.28
-3.32
-3.32
-3.43
-3.43
(00)
(00) | -value
e .2.57
e .3.02
-3.55 | e(DD) 4
e(DDS) 2
MBtu
MBtu | | MApartment
ating Load | ۵ | XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX | Slope
Curve
Heated Ba | | R-6
R-11 flr
R-19 flr
R-38 flr
R-49 flr
Inter
Slope
Curve | Window U-
1-Pane
2-Pane
3-Pane
R-10 | Slope
Curve
18.57 N
6.31 N
2.29 N | | WYEC N | ponent
(KBtu) | (/sf)
10.84
3.88
2.77
1.77
1.48
1.69
.69 | 540.20
48.715
(/ft) | 16.3
3.6
2.5
2.5
1.5
1.5
236.0 | 1.28
1.28
.36
.17
.139
420.27 | (/sf flr)
2.63
1.41 | 4.688
4.6888
1.08d | | nio TX | Delta Comp
(MBtu) (| 0
0
1 4 4 1 1 1 2 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 | e(DD) 1
e(DDS) | -3.45
-3.65
-3.69
-3.68
-3.72
-3.72
-3.72
-3.72
-3.72
-6.00) | aated Basement -2.99 1 flr -3.47 9 flr -3.66 Intercept Slope(DD) Curve(DDS) - | Ø 4 4
Ø 8 8 | .001ELF
.001ELF
Base
Typica
Residua | | San Antoni | J | C. R. | Slope
Curve | 2ft
4ft
3 2ft
3 4ft
Inte
Slop
Curv | R-0
R-11 flr
R-19 flr
R-30 flr
Inte
Slop
Curv | Infiltrat
ELF Ach
.0007(.68)
.0005(.49)
.0003(.29) | Slope/.curve/. | | | Cooling Load | Delta Component
(MBtu) (KBtu) | Wall (/sf) R-0 .00 1.34 R-757 .83 R-1165 .76 R-1384 .59 R-27 -1.07 .39 R-34 -1.15 .32 | Slope(DD) 417.48
Curve(DDS) -31.242
Heated Basement (/ft) | | | Window U-value (/sf) 1-Pane .00 -4.52 2-Pane .40 -2.35 3-Pane .56 -1.51 R-10 .7451 | Slope(DD) -223.56
Curve(DDS) 1.984
8.46 MBtu
2.65 MBtu
.56 MBtu | |-------------------------|--------------|----------------------------------|--|---|--|--|--|---| | ing Series Two | · · | Delta Component
(MBtu) (KBtu) | Ceiling (/sf) R-0 .000 3.55 R-7 -3.26 1.40 R-19 -4.25 .76 R-22 -4.44 .64 R-30 -4.70 .64 R-38 -4.85 .37 R-49 -4.95 .31 R-60 -5.01 .27 | Slope(DD) 704.73
Curve(DDS) -18.678
Slab (/ft) | R-6
R-5 2ft -1.04 -6.46
R-5 4ft -1.04 -6.46
R-10 2ft -1.00 -6.22
R-10 4ft68 -4.29
Intercept .000
Slope(DD) -1846.80
Curve(DDS) 86.671 | R-07953
R-11 flr .31 .18
R-19 flr .69 .43
R-30 flr .93 .58
Intercept 1.021
Slope(DD) -602.56
Curve(DDS) 58.377 | Infiltration (/sf flr) ELF Ach .0007(.50) .0055 .0005(.35) .1347 .0003(.21) .3532 | Slope/.001ELF -1.299
Curve/.001ELF .731
Base Load = Typical Load = Residual Load = | | One Story Prototype Sid | Heating Load | Delta Component
(MBtu) (KBtu) | Wall
R-0
R-7
R-11 -5.62 2.78
R-13 -6.29 1.56
R-19 -6.29 1.56
R-27 -7.02 .91
R-34 -7.26 .70 | Slope(DD) 784.20
Curve(DDS) 101.668
Heated Basement (/ft) | R-6
R-5 4ft -4.89 8.27
R-5 8ft -5.20 6.40
R-10 4ft -5.15 6.70
Intercept 1.209
Slope(DD)
291.82
Curve(DDS) 3.320
Crawl (/sf) | R-0 .00 4.07 R-11 flr -6.6324 R-19 flr -7.2464 R-30 flr -7.5383 R-38 flr -7.6087 R-49 flr -7.7999 Intercept -1.186 Slope(DD) 346.65 Curve(DDS) 132.124 | Window U-value (/sf) 1-Pane .00 21.98 2-Pane -2.89 6.35 3-Pane -3.36 3.81 R-10 -3.91 .83 | Slope(DD) 304.11
Curve(DDS) 20.023
35.58 MBtu
9.86 MBtu
4.96 MBtu | | San Diego CA TMY | ¥ . | Delta Component
(MBtu) (KBtu) | Ceiling (/sf) R-0 | Slope(DD) 1640.61
Curve(DDS) 12.217
Slab (/ft) | R-Ø
R-S 2ft -5.70 3.39
R-S 4ft -5.89 2.24
R-10 2ft -5.84 2.54
R-10 4ft -6.05 1.28
Intercept .000
Slope(DD) 175.72
Curve(DDS) 73.662 | R-0 -3.26 1.95 R-11 flr -6.06 .13 R-19 flr -6.5820 R-30 flr -6.9142 Intercept948 Slope(DD) 689.48 Curve(DDS) -24.265 | Infiltration (/sf flr)
ELF Ach
.0007(.56) .00 1.51
.0005(.41) -1.59 .48
.0003(.25) -2.4407 | Slope/.001ELF -2.046
Curve/.001ELF 6.007
Base Load =
Typical Load =
Residual Load = | | | | (KBtu) | (/sf)
.75
.21
.044
.022
.023 | -7.37
27.254
(/ft) | -16.83
-15.08
-14.58
-14.58
-11.293
-261.81 | (/sf) | 1.034
1.034
1.034
1.034
3.034
3.034 | (/sf)
-17.60
-12.88
-8.44
-3.22 | 29.252
29.252 | |----------|--------|------------------|--|------------------------------|--|--------------|--|---|--| | | | ΰς | 7 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 2 | DD)
DDS)
ement | .03
.09
.09
.03 | | .00
.37
.34
.71
.71
.80
.1 .05 | | s) -1 | | | peo. | Delta
(MBt | HEOF4 | <u> </u> | t t t t t t t t t t t t t t t t t t t | | fir
fir
fir
fir
fir
fir
fir
lope(DD)
urve(DDS) | U-val | ve (DDS)
ve (DDS)
WBtu
MBtu
MBtu | | | 9 | | ************************************* | Slope
Curve | 16 84
10 84
10 84
10 84
10 10 10 10 10 10 10 10 10 10 10 10 10 1 | - × | # 0 2 8 8 B B B B B B B B B B B B B B B B B | 1-Pa
2-Pa
3-Pa
R-10 | Slo
Cur
6.23
4.10
6.86 | | | Coolin | | | Ŧ | \$ \$ \$ \$ \$ \$ | Ç | ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ | . W. | н н п | | | | onent
KBtu) | (/sf)
1.89
1.53
1.20
1.01
1.01
1.01
5.00
5.00 | 67.12
8.218
(/ft) | 22.33
20.33
20.33
19.83
13.83
.000
66.74 | (/st) | -1.12
41
29
22
857
10.66 | sf fl.
-1.94
-1.74
-1.26 | 5.25Ø
3.542
Load
Load | | | | Compo | 083
082
083
083
083
083
083
083
083
083
083
083 | 111 | 93399
9389
1 4 4 8 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 | ement | 16
27
34
38
-2 | 988
82 | Sase
ical | | 1 | | elta
(MBt | ng 11. | (S00)
(003) |

 | Ваѕеп | (00)
(00) | | 001ELF
001ELF
Typ
Resi | | er i es | | ۵ | R-60
R-11
R-11
R-13
R-13
R-22
R-38
R-38
R-49 | Slope
Curve
Slab | 2ft
4ft
2ft
Inter
Slope
Curve | ated | fir
fir
fir
fir
Slope | iltrat
Ach
7(.50)
5(.35)
3(.21) | 9./edo | | v | | | | | R R - 5
R - 5
R - 11
R - 11
8 - 11
8 - 11 | Unhe | R-6
R-11
R-19
R-30 | Infi
ELF
.0007
.0005 | Slo | | iding | | د <i>د</i> | ~48~S4S8 | 18 ~ | 38827277 | | യ വ ത ത ത വ ത ത
സ വ ത ത ത ത ത | ~ 8888 | | | ο | | ponent
(KBtu) | 7.00071 | 532.41
96.ø18
(/ft) | 20.22
11.47
9.97
10.22
7.97
4.246
347.18 | (/sf) | 3.53
1.03
1.03
1.03
1.399
69.665 | 15.3
14.9
2.9 | 285.28
11.17 | | rototyp | | E CO | 0 7 6 4 4 4 8 9 9 | t c | 31
72
71
80 | | 23
23
23
23
23
23 | .00
1.50
1.78
2.10 | - (0 | | P | 70 | Delta
(MBt | 112222 | e (DD)
e (DDS)
lasemen | (00S) | | -11-
-22-
-22-
-26(00)
ve(00) | | pe(DD) | | Town | g Loa | | R R R R R R R R R R R R R R R R R R R | Slop
Curve | 8ft
8ft
8 Aft
Inter
Slope | - | 1 fl
9 fl
Slo
Cur | A 20 − 0 € | Slo
Cur
3.42
3.85 | | P : X | eating | | | Д
Ф | 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 | Cra | ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ | win (| | | | ž | ent
3tu) | /sf)
9.42
3.18
2.19
1.29
1.08
.79
.49 | 8.25
.907
/ft) | 8.47
2.72
2.97
1.72
2.92
2.92
1.23 | /sf) | 1.35
.46
.16
.01
.379
9.79 | f flr
1.22
.58
.17 | .917
.917
Load
Load | | TMY | | CKBt. | Ø 2 4 8 L 8 8 9 L | 1068 | 88
5
2 4 8
8 5 | ant (| 1
2
1
1
-37 | .øø
.77
.26 | ase
cal | | ₹ | | (MBtu) | 0
1 1 1 1 1 1 1 1 0
6 2 4 4 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 | (800)
(008) | -1.7
-1.9
-2.8
-2.8
-2.8
(00)
(00S) | 3asement | -1.3
-1.8
-2.0
-2.0
-2.1
-2.1
-2.1
-2.0
-0.0
-0.0
-0.0 | i oi . | 7.001ELF
7.001ELF
Typi
Resid | | Diego | | 90 | 6 i i i i i i i i i i i i i i i i i i i | lope
urve
lab | 2ft
2ft
1ntero
Slope
Curve | ted B | fir
fir
Interd
Curve | tra
Ach
(.58 | o`o` | | San D | | | ပီထိထိထိထိထိထိထိထိထိထိ | νο ν | R-8
R-5
R-18
R-19
C | Unhea | R-6
R-11
R-19
R-30
R-30 | Inf:
ELF
.0007
.0005 | Curv | | | ng Load | Delta Component
(MBtu) (KBtu) | Wall (/sf) R-0 .00 .78 R-719 .17 R-1122 .08 R-132501 R-272602 R-3425 .00 | Slope(DD) -56.11
Curve(DDS) 37.311
ated Basement (/ft) | -6 4ft09 -23.79
-5 8ft09 -21.45
-5 8ft09 -21.45
-10 4ft09 -21.62
-10 8ft04 -19.95
Intercept -17.570
Slope(DD) -283.15
Curve(DDS) 3.203 | 1 flr 42 2
9 flr 47 1
8 flr 55 6
9 flr 59 6
Intercept 59 6
Slope(DD) -228.03
Curve(DDS) 4.084 | 1-Pane .00 -13.42
2-Pane .40 -10.65
3-Pane .92 -7.01
R-10 1.54 -2.73 | Slope(DD) -1223.94
Curve(DDS) 27.102
4.68 MBtu
2.92 MBtu
3.69 MBtu | |-----------------------|------------|----------------------------------|--|---|---|--|---|--| | g Series Two | Cooling | Delta Component
(MBtu) (KBtu) | Ceiling (/sf) R-0 R-7 -1.29 R-11 -1.49 1.38 R-19 -1.67 1.07 R-22 -1.78 -1.93 R-38 -2.01 R-49 -2.05 R-44 R-60 -2.07 -4.08 | Slope(DD) 1021.83
Curve(DDS) -62.506
Slab (/ft) He | R-016 -23.95 R-
R-5 2ft05 -20.12 R-
R-10 2ft01 -18.62 R-
R-10 4ft04 -19.79 R-
Intercept .15 -13.45 R-
Slope(DD) -5330.08
Curve(DDS) 286.100 | 1 flr16 -1.19 R
9 flr2846 R
8 flr5108 R
Intercept332 Slope(DD) -568.42 Curve(DDS) 52.600 | Infiltration (/sf flr) WiseLF Ach
.0007(.50) .0081
.0005(.35) .1965
.0003(.21) .4543 | Slope/.001ELF -1.667
Curve/.001ELF .729
Base Load =
Typical Load =
Residual Load = | | tment Prototype Sidin | ating Load | Delta Component
(MBtu) (KBtu) | Wali
R-0
R-7 -1.09 1.60
R-11 -1.24 1.11
R-13 -1.34 .80
R-27 -1.46 .42
R-34 -1.51 .27 | Slope(DD) 263.06
 Curve(DDS) 125.111
 Heated Basement (/ft) | R-0
R-5 4ft -2.08 6.61
R-5 8ft -2.13 5.11
R-10 4ft -2.12 5.44
R-10 8ft -2.17 3.61
Intercept .606
Slope(DD) 266.31
Curve(DDS) 2.042 | R-0
'R-11 flr -2.03 .42
R-19 flr -2.18 .17
R-30 flr -2.26 .02
R-36 flr -2.2901
R-49 flr -2.3411
Intercept189
Slope(DD) 176.15
Curve(DDS) 117.216 | WindowwU-value (/sf) 1-Pane .00 13.08 2-Pane -1.29 4.16 3-Pane -1.52 2.53 R-10 -1.80 .62 | Slope(DD) 239.68
Curve(DDS) 9.692
12.17 MBtu
3.07 MBtu
4.58 MBtu | | | T. | Delta Component
(MBtu) (KBtu) | Ceiling R-0 R-0 R-7 -3.77 3.06 R-11 -4.37 2.06 R-19 -4.91 1.16 R-22 -5.19 70 R-38 -5.28 R-49 -5.35 R-49 -5.35 8-43 | Slope(DD) 922.80
Curve(DDS) 110.306
Slab (/ft) | R-Ø -2.09 6.28
R-5 2ft -2.20 2.78
R-5 4ft -2.22 2.11
R-10 2ft -2.21 2.44
R-10 4ft -2.24 1.44
Intercept .000
Slope(DD) 427.00
Curve(DDS) 12.433 | R-0 -1.85 .72
R-11 flr -2.22 .11
R-19 flr -2.3004
R-30 flr -2.3613
Intercept364
Slope(DD) 316.21
Curve(DDS) -20.358 | Infiltration (/sf flr)
ELF Ach
.0007(.58) .00 .87
.0005(.42)75 .25
.0003(.25) -1.1408 | Slope/.001ELF -1.375
Curve/.001ELF 3.750
Base Load = Typical Load = Residual Load = | | | component
(KBtu) | (/sf)
(.31
(.15
(.09)
(.09) | 74.86
-3.270
(/ft) | | (/sf) | . 14
. 24
. 24
. 24
. 25
. 25
. 4 . 36 | (/sf)
.32
.38
.25 | 47.80 | |---------------------------------------|----------------------------------|--|---|---|-------------------------
---|--|--| | Cooling Load | Delta Cor
(MBtu) | R-0
R-7
R-7
R-1106
R-1322
R-1924
R-2726
R-3426 | Slope(DD)
Curve(DDS)
Heated Basement | R-031
R-5 4ft28
R-5 8ft26
R-10 4ft27
R-10 8ft25
Intercept Slope(DD)
Curve(DDS) | Crawl | R-0
R-11 flr .15
R-19 flr .15
R-30 flr .16
R-36 flr .16
R-49 flr .17
Intercept Slope(DD)
Curve(DDS) | Window U-value
1-Pane .00
2-Pane .01
3-Pane01
R-1004 | Slope(DD)
Curve(DDS)
1.95 MBtu
.52 MBtu
38 MBtu | | ing Series T⊮o | Delta Component
(MBtu) (KBtu) | Ceiling (/sf) R-Ø .74 R-772 .28 R-1184 .20 R-1997 .13 R-2297 .11 R-38 .1.04 .07 R-49 .1.06 .05 R-60 .1.08 .04 | Slope(DD) 121.18
Curve(DDS) .753
Slab (/ft) | R-0
R-5 2ft3052
R-5 4ft2734
R-10 2ft2840
R-10 4ft2628
Intercept .0000
Slope(DD) -98.23
Curve(DDS)281 | Unheated Basement (/sf) | R-0
R-11 flr10 .07
R-19 flr05 .11
R-30 flr02 .13
Intercept .178
Slope(DD) -70.55
Curve(DDS) 4.594 | Infiltration (/sf flr)
ELF Ach
.0007(.93) .00 .05
.0005(.67)01 .04
.0003(.40)03 .03 | Slope/.001ELF .130
Curve/.001ELF081
Base Load =
Typical Load =
Residual Load = | | One Story Prototype Sid
ating Load | Delta Component
(MBtu) (KBtu) | Wali
R-0
R-7
R-1
R-11 -12.42 7.40
R-13 -14.33 5.71
R-19 -15.27 4.87
R-27 -16.75 3.55
R-34 -17.66 2.74 | Slope(DD) 3484.77
Curve(DDS) -9.887
Heated Basement (/ft) | R-0 -7.20 62.37
R-5 4ft -10.60 41.89
R-5 8ft -11.81 34.68
R-10 4ft -11.47 36.65
R-10 8ft -13.13 26.65
Intercept 5.162
Slope(DD) 2514.90
Curve(DDS) -26.646 | Craw! (/sf) | R-0
R-11 flr -19.17 -1.05
R-19 flr -21.72 -2.71
R-30 flr -22.78 -3.39
R-38 flr -23.02 -3.55
R-49 flr -23.72 -4.00
Intercept -5.210
Slope(DD) 2085.61
Curve(DDS) 224.961 | Window U-value (/sf) 1-Pane .00 79.18 2-Pane -8.97 30.64 3-Pane -11.10 19.10 R-10 -13.61 5.53 | Slope(DD) 2289.33
Curve(DDS) 26.891
91.77 MBtu
36.06 MBtu
9.18 MBtu | | San Francisco CA TMY He | Delta Component
(MBtu) (KBtu) | Ceiling (/sf) R-0 .000 20.25 R-7 -18.58 8.18 R-11 -21.55 6.25 R-19 -24.21 4.52 R-22 -25.28 3.83 R-30 -26.75 2.89 R-38 -27.59 R-49 -28.33 1.85 R-60 -28.80 1.54 | Slope(DD) 4242.92
Curve(DDS) -139.693
Slab (/ft) | R-Ø
R-E 2ft -13.59 23.88
R-5 4ft -14.53 18.22
R-1Ø 2ft -14.22 20.08
R-1Ø 4ft -15.37 13.16
Intercept .000
Slope(DD) 5032.69
Curve(DDS) -40.624 | Unheated Basement (/sf) | R-0 -7.20 6.72
R-11 fir -16.87 .44
R-19 fir -19.25 -1.10
R-30 fir -20.78 -2.09
Intercept -4.703
Slope(DD) 3511.05
Curve(DDS) -250.182 | Infiltration (/sf flr)
ELF Ach
.0007(.73) .00 9.72
.0005(.51) -5.49 6.16
.0003(.31)-10.01 3.22 | Slope/.001ELF 8.376 Curve/.001ELF 7.874 Base Load = Typical Load = Residual Load = | | | | Component
(KBtu) | (/sf)
.38
.20
.17
.12
.09
.08 | 79.94
1.546
(/ft) | -1.01
76
51
51
26
26
551
1.474 | (/st) | . 13
. 22
. 23
. 25
. 25
. 27
. 27
. 49
. 85 | (/sf)
10
16
06 | .307 | |---------------------------|--------------|----------------------------------|---|--|---|---------------------------|--|---|--| | | Cooling Load | Delta Comp
(MBtu) (| Wall
R-0
R-7 09
R-11 10
R-13 13
R-19 14
R-34 15 | Slope(DD)
Curve(DDS)
Heated Basement | R-612
R-5 4ft11
R-5 8ft10
R-10 4ft10
R-10 8ft09
Intercept Slope(DD) | Crawl | R-0
R-11 fir .05
R-19 fir .06
R-38 fir .07
R-38 fir .07
R-49 fir .08
Intercept .08
Slope(DD) | Window U-value 1-Pane .00 2-Pane .00 3-Pane .00 R-10 .01 | Slope(DD)
Curve(DDS)
1.53 MBtu
.87 MBtu
.29 MBtu | | ng Series Two | Coo | Delta Component
(MBtu) (KBtu) | Ceiling (/sf) R-Ø R-Ø R-1134 .45 R-1139 .36 R-1244 .28 R-2247 .24 R-3850 .18 R-4954 R-6055 .10 | Slope(DD) 273.47
Curve(DDS) -17.258
Slab (/ft) | 2ft15 -1.76
4ft13 -1.26
4ft12 -1.01
0 2ft12 -1.01
0 4ft1176
Intercept .000
Slope(DD) -318.17
Curve(DDS) 14.179 | Unheated Basement (/sf) (| R-0
R-11 flr03 .08
R-19 flr .01 .14
R-30 flr .03 .18
Intercept .294
Slope(DD) -154.14
Curve(DDS) 16.323 | Infiltration (/sf flr) W
ELF Ach
.0007(.93) .00 .04
.0005(.67) .01 .05
.0003(.40) .00 .04 | Slope/.001ELF .208 Curve/.001ELF208 Base Load = Typical Load = Residual Load = | | Mid Town Prototype Siding | eating Load | Delta Component
(MBtu) (KBtu) | Wall R-0 R-7 R-7 R-1 R-11 R-13 R-13 R-13 R-13 R-13 R-27 R-27 R-34 R-34 R-34 R-34 R-34 R-34 R-34 R-34 | Slope(DD) 1995.57
Curve(DDS) 190.880
Heated Basement (/ft) | -0 | Crawl (/sf) | R-0
R-11 flr -6.16 .27
R-19 flr -6.9097
R-38 flr -7.26 -1.56
R-38 flr -7.34 -1.70
R-49 flr -7.58 -2.09
Intercept -2.946
Slope(DD) 1571.64
Curve(DDS) 206.169 | Window U-value (/sf) 1-Pane .00 55.36 2-Pane -5.42 17.72 3-Pane -6.42 10.80 R-10 -7.59 2.65 | Slope(DD) 1033.03
Curve(DDS) 40.302
39.82 MBtu
14.54 MBtu | | San Francisco CA TMY | H. | Deita Component
(MBtu) (KBtu) | Ceiling (/sf) R-Ø 21.73 R-7 -8.3Ø 7.89 R-11 -9.63 5.68 R-19 -10.82 3.7Ø R-3Ø -11.66 2.3Ø R-38 -11.95 1.81 R-49 -12.16 1.46 R-6Ø -12.3Ø 1.23 | Slope(DD) 3256.26
Curve(DDS) 68.970
Slab (/ft) | 2ft -5.12 30.0
4ft -5.97 8.7
2ft -5.97 8.7
3 4ft -6.08 6.0
Intercept .00
Slope(DD) 1963.0
Curve(DDS) 106.36 | Unheated Basement (/sf) | R-0 -3.99 3.88 R-11 flr -5.99 .55 R-19 flr -6.5437 R-30 flr -6.9097 Intercept -2.560 Slope(DD) 2165.32 Curve(DDS) -177.203 | Infiltration (/sf flr)
ELF Ach
.0007(.72) .00 5.26
.0005(.50) -3.34 2.47
.0003(.31) -5.45 .72 | Slope/.001ELF -1.459
Curve/.001ELF 12.813
Base Load = Typical Load = Residual Load = | | | Component
(KBtu) | (\$ \$)
31 .
115 .
13 .
60 .
66 .
65 . | 57.56
.184
(/ft) | 85
35
35
36
36
36 | (/sf) | .06
.15
.14
.14
.123
.7.30 | (/sf)
.11
.64
.63 | 3.67 | |--|----------------------------------|--|--|--|-------------------------|--|--|--| | Cooling Load | Delta Con
(MBtu) | Watl
R-6
R-705
R-1106
R-1307
R-1908
R-2708
R-3409 | Slope(DD)
Curve(DDS)
Heated Basement | R-Ø
R-5 4ft05
R-5 8ft04
R-10 4ft04
R-10 8ft04
Intercept Slope(DD)
Curve(DDS) | Crawl | R-0
R-11 flr .06
R-19 flr .05
R-30 flr .05
R-36 flr .05
R-49 flr .05
Intercept .25
Slope(DD) | Window U-value
1-Pane .00
2-Pane01
3-Pane01
R-1002 | Slope(DD)
Curve(DDS)
1.19 MBtu
.59 MBtu | | Siding Series Two
Co | Delta Component
(MBtu) (KBtu) | Ceiling (/sf) R-0 R-7 R-11 R-13 R-19 R-22 R-26 R-36 R-36 R-36 R-36 R-36 R-36 R-36 R-3 | Slope(DD) 185.11
Curve(DDS) -2.723
Slab (/ft) | R-085 R-5 2ft0435 R-6 4ft0435 R-10 2ft0435 R-10 4ft0419 Intercept .000 Slope(DD) -77.80 Curve(DDS)802 | Unheated Basement (/sf) | R-00604 R-11 flr01 .03 R-19 flr00 .05 R-30 flr .01 .07 Intercept .100 Slope(DD) -47.31 Curve(DDS) 3.779 | Infiltration (/sf flr)
ELF Ach
.0007(.93) .00 .08
.0005(.67)02 .06
.0003(.40)04 .04 | Slope/.001ELF .146
Curve/.001ELF052
Base Load = Typical Load = Residual Load = | | MApartment Prototype Sid
Heating Load | Delta Component
(MBtu) (KBtu) | Wall R-6 R-7 -3.14 6.09 R-11 -3.59 4.68 R-13 -3.98 3.44 R-19 -4.17 2.83 R-27 -4.44 1.99 R-34 | Slope(DD) 1677.64
Curve(DDS) 241.215
Heated Basement (/ft) | R-0 -5.37 61.55 R-5 4ft -6.36 28.39 R-5 8ft -6.58 21.05 R-10 4ft -6.54 22.55 R-10 8ft -6.83 12.72 Intercept -5.960 Slope(DD) 2041.56 Curve(DDS) -7.240 | Craw! (/sf) | R-0 .00 12.03
'R-11 flr -6.86 .59
R-19 flr -7.6776
R-30 flr -7.95 -1.22
R-38 flr -8.01 -1.33
R-49 flr -8.20 -1.33
R-49 flr -8.20 -1.33
R-49 flr -8.20 -1.33
R-40 flr -8.20 -1.33
Curve(DDS) 1316.96 |) Window U-value (/sf)
1-Pane .00 52.53
2-Pane -5.40 15.07
3-Pane -8.26 9.04
R-10 -7.29 1.94 | Slope(DD) 712.03
Curve(DDS) 48.403
= 37.64 MBtu
= 12.92 MBtu | | San Francisco CA
TMY | Delta Component
(MBtu) (KBtu) | Ceiling (/sf) R-0 .00 21.53 R-7 -8.49 7.39 R-11 -9.84 5.13 R-19 -11.06 3.10 R-22 -11.37 2.59 R-36 -11.78 1.90 R-38 -12.21 1.19 R-49 -12.21 1.19 R-60 -12.32 1.00 | . Slope(DD) 2603.87
Curve(DDS) 173.453
Slab (/ft) | R-0 -6.03 39.39
R-5 2ft -6.67 18.22
R-5 4ft -6.81 13.55
R-10 2ft -6.76 15.22
R-10 4ft -6.93 9.55
Intercept .000
Slope(DD) 3442.99
Curve(DDS) 52.461 | Unheated Basement (/sf) | R-11 flr -7.08 .23
R-19 flr -7.6962
R-30 flr -7.92 -1.17
Intercept -2.663
Slope(DD) 2035.67
Curve(DDS) -178.651 | Infiltration (/sf flr) ELF Ach .0007(.72) .00 4.77 .0005(.50) -3.40 1.93 .0003(.31) -5.39 .28 | Slope/.001ELF -3.500
Curve/.001ELF 14.740
Base Load :
Typical Load :
Residual Load : | | | | omponent
(KBtu) | (,sf)
.383
.333
.193
.151 | 156.33
-8.859
(/ft) | 01 60 | (/sf) | . 42
. 56
. 55
. 55
. 55
. 55
. 53
. 32.27 | (/sf)
.20
.14
.09 | 16.09 | | |-----------|--------------|--------------------|---|---------------------------|---|--------|--|---|------------------|---| | | | elta (
(MBtu) | 0.1.1.1.1.2888.288.28.44.4.6.79.28.28.28.39.39.39.39.39.39.39.39.39.39.39.39.39. | (DD)
(DDS)
sement | 68
69
68
70
68
(DD)
(DD) | | .80
.22
.21
.21
.21
.21
.21
(0D)
(DD) | | (800)
(008) | ָ
בר
בר
בר
בר
בר
בר
בר
בר
בר
בר
בר
בר
בר | | | Cooling Load | ۵ | ************************************** | Slope
Curve | -0
-5 4ft
-5 8ft
-10 4ft
-10 8ft
Inter
Slope
Curve | - Aer | -0
-11 fr
-19 fr
-30 fr
-49 fr
Inter
Slope
Curve | indow U-v
1-Pane
2-Pane
3-Pane
R-10 | Slope (Curve) | 4.18 MB
.91 MB
9Ø MB | | | Cool | | | · | ««««« | Ç | ~ ~ ~ ~ ~ ~ ~ | ₹ | | 11 H H | | | | omponent
(KBtu) | (/sf)
1.54
1.64
1.64
1.33
1.28
1.22
1.13 | 305.91
-7.766
(/ft) | 202.
6.00 | (/sf) | 01
.37
.37
.42
.563
.196.91 | .67
.07
.05 | 760. | e Load | | 0 | | ~G | | ~ (i) | S) t . 888
(S) (S) | елелt | 66
21
08
08
00 | 9.9.9.
8.8.8 | بديد | Base
pica
idua | | ≱ | | Delta
(MBt | 5) | (00)
(008) | 900 | Base | fir -:
fir -:
fir -:
fir -:
Slope(DD) | 2000
1 1 | MOTELF
MOTELF | Tyl | | er:es | | | Ceil
R-0
R-7
R-11
R-22
R-38
R-38
R-49 | Slop | S-fttt | ated | fir
fir
fir
fir
fir
fir
fir
fir
fir
fir | Ach
7 (-57
5 (-41
3 (-24 | pe/.g | | | S | | | | | 888-1888-1888-1888-1888-1888-1888-1888 | Unhe | R-11
R-11
R-30 | Inf:
ELF:
00007
00005 | Slop | | | ding | | | | | | | | | | | | S | | (KBtu) | /sf)
60.16
7.87
8.67
8.67
4.77 | 2.69
.143
/ft) | 1.92
8.62
8.62
8.72
8.666
7.65 | /sf) | 5.19
2.880
5.71
7.92
9.11
9.26
1.340 | /sf)
2.35
6.92
2.52
3.83 | 375 | | | type | | E O | 08 8 8 8 9 7 4 9 8 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 | 6232-116. | 4 4 6 6 4 4 4 6 6 9 4 4 6 6 9 6 9 6 9 6 | J | 1 | (/
8 142
4 66
5 42
5 13 | 5936
-20 | | | Prototype | | elta C.
(MBtu) | 22. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. | (DD)
(DDS)
sement | -8.1
-12.3
-14.4
-13.5
-18.6
(DD)
(DD) | | .000
-27.71
-32.20
-34.97
-35.60
-37.42
(DD)
(DD) | . 00.
-13.94
-18.48 | (SQQ) | MBtu
MBtu
MBtu | | Story | Load | ۵ | 100 - 110 - | lope
urve
d Ba | 484844
 | | 1 + + | - C a a
a c a a a c a a a a a a a a a a a | lope
urve | 65 ME
21 ME | | o o | ing | | ≥ ∝ ∝ ∝ ∝ ∝ ∝ ∝ | S
C
Gate | 1115
115
116
0 0 1 | raw | 11111
4 3 8 8 9 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | 10 do w 2 - P W W - 1 - P | νü | 153.
52.
9. | | ő | Heat | | | . | ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ | U | 888888 | <u>.</u>
¥ | | 11 11 11 | | WYEC | | onent
(Btu) | (/sf)
31:22
12:53
9:54
6:86
5:82
4.41
3:57
2:32 | 25.75
5.521
(/ft) | 66.50
32.52
20.78
26.62
10.78
11.102
77.46 | (/sf) | 9.91
-1.05
-3.94
-5.79
0.727
79.29 | 7.02
7.03
7.14 | . 468 | Load
Load
Load | | ≨ | | Compone
(KBt | 5 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 | -196 | 61
61
61
61
61
61
61
61
61
61
61 | ent | 14
602
46
32
-16
-16
-517 | (/s | 23 | Sa Se
Ca I | | | | (MBtu) | 0
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | (S00)
(00) | -12.0
-18.0
-19.0
-18.0
-18.0
(00)
(00)
(00S) | a se | | ion
-7.6
-15.2 | JELF
JELF | Typ:
Resid | | ¥
• | | a C | 11.
11.
11.
11.
11.
11.
12.
13.
13.
14.
16.
16.
16.
16.
16.
16.
16.
16.
16.
16 | 0 C 4 | ************************************** | 9 Pe | 000 | trat
Ach
.75)
.54) | /.øø16
/.øø16 | _ | | eattl | | | | <u>8</u> 2 8 | -6
-5
-15
-16
-16
-16
-16
-17
-16
-17
-17
-17
-17
-17
-17
-17
-17
-17
-17 | Unheat | -0
-11 fl
-19 fl
-30 fl
Inte | Infil
ELF
0007(
0005(
0003(| Slope | | | | | | | | | | | | | | | | | (KBtu) | (/sf)
84 | . 51 | 4 | S. C. | ກເ | 57. | | | 249.64
17.218 | (/ft) | -1.68 | 4 | -1.18 | | 9 8
9 8
1 | -97.08 | 700.1 | (/sf) | 60 (| . 65 | 9 | စစ | .67 | -11.65 -9.801 | | (/st) | 54 | • | | ٠. | -1.0/4 | | | |------------|----------|---------------------|-------------|-------------|------------|--------------|-------|----------|------|--------------|-------------------|----------|--------------------------|-------------|-----------|-------------|-----------------|----------------------|-----------------------|------------|-------------|--------|----------------------|----------------------|--------|------------------------|------------------|-----------|----------|-------------|----------------------------------|--------|----------------------------|---------------|---------| | | | (MBtu) | 6 | ; =: | ٦. | 23 | ., c | ., a | • | | (SGG) - | sement | 000 | 27 | 26 | 27 | • | (00)
(00)
(00) | (can) | | 0 - | 18 | .18 | 1. 1. | cept | e(DD)
e(DDS) | | -value | ø. | 60. | . 88 | (00) | 3 | MBtu
MBtu | 38 40 | | - | ing Load | ۵ | Wall | R-7 | 7 | R-13 | 7 | ? ? | î | | Slope | eated Ba | | - 16
- 4 | . 19 | -10 | -10 8ft | Shope
Shope | _ | Law | 9: | 110 41 | -30 f | R-38 flr
R-49 flr | Inte | Slope | ; | Window U- | <u>-</u> | ٩ | 3-Pan
R-10 | 9 | ,
L | 3.06 | - | | | Cooling | ponent
(KBtu) | (/sf) | • | 69. | . 55 | .46 | .35 | 82. | . 20 | 31.89
6.727 | (/ft) H | | 4.6 | 4.43 | 89. | 3.93 | 000 | 7.70 | (/sf) C | 11 | N 6 | 20 | <u> </u> | 695 | 280 | D | sf fir) | - 07 | 07 | ö | 250 | 60 | e Load = | Load | | Two | | (MBtu) (k | | 9.4 | | | • | • | • | -1.00 | (00)
(008) -3 | | | 4
4 . 1 | | 40 | ო | cept -4
(DD) -4 | _ | Basement | 28 | ė, | 9.00 | | cept | (00) | | tion (/ | 6 | 99. | . | 01ELF | ØBIELF | Bas
Typica | Residua | | Series | | De
De | n : 1 : e | ж
о
о | 7 | 7 | 7 | <u>ب</u> | ۳ - | R - 60 | Slope (Curve) | Slab | | R-Ø | 9 4 | 7 | -10 4ft | Inter
Slope | Curve | Unheated 6 | 9 | -11 1 | R-19 11r
R-30 fir | | Toter | Slope (DD) | 9
\
1
1 | Infiltra | ELF Ach | 9005 (41 | . 0003 (.24 | lope/. | rve/ | | | | Siding | | u)
(n) | 4 | ດາ ເ | ກຕ | 82 | יט י | • | *** | | .37 | ft) | • | .87 | | 175 | .87 | 93 | 547 | sf) | .54 | .08 | .71 | .61 | 500 | 38.6 | 487 | /sf) | 6 | 2.82 | 3.15
Ø.25 | 7 | .183 | | | | 6 | | mponent
(KBtu) | 5 | 58 | - F | - C | , ~ | ഹ | 4 | | 5299
16.8 | > | ; | 110 | 7. | 8 0 | 4 | 3985 | 32. | ٥ | | | | | | 4720 | 12. | > | , | 0 12
5 2 | | ~ | 12 | | | | Prototyp | | elta Com
(MBtu) | | 0,0 | 77 | 1.0 | . ~ | N | œ. | | • (DD)
• (DDS) | asement | | 4. | si d | -7.44 | ે. | cept (00) | e | | ĕ | 6 | -11: | | -13. | e(DD) | • | U-value | • | 9. E | -12.9
-16.2 | • | (SQQ) | MBtu | MBtu | | d Town | ing Load | ۰. | Wal | R-0 | - | R-11 | 1 | ۲, | က | | Slope | eated B |
 -
 -
 -
 - | ا روا | ان
4 ر | ر
ا
ا | 1 2 2 | , E S | 5 | Craw | 9-8 | -11 fl | -19 fl | R-38 flr | -49 fl | | Su. | Window U | 1 | <u>م</u> ۵ | 3 - Pan | 7 | 22 | 71.54 | 8. | | . <u>.</u> | Heat | <i>م</i> بد | _ | . m | м - | 4 (1 | o uc | ຸດ | 9 | o ø | 2.9 | Η
C | | ~ | N I | ٠° | • • | 144 | = | ÷. | o. | , | 56 | . | | 50 | 88 | f1r) v | | 9,9 | 22 | | 21 | וו
סיס | סדים | | WYEC | | Component
(KBtu) | (/sf | 32.7 | 12.6 | ວນ ແ
4. ກ | מו כ | 4 | 3.3 | 8.69
6.63 | 6032.
-86.3 | * | | . 79 | 33 | 22° | . 4 | -12. | 71.1 | <u>s</u> | 6 | |
 | . 7 | Č | 5296. | 92.3 | (/sf 1 | ; | 14. |
 | 7 | 2.50 | Base Log | ۲° | | | | E.C. | • | ė. | 2.0 | 9 6 | | 7.5 | 17.6 | -18.05 | ~6 |) | | -7.2 | -8.5 | 0.0 | 9 9 | ept. | (\$00) | sasement | 4 | . 2 | -10.8 | 7 7 7 | | (00)
(00) | | t:01 | | ,
Ø | -10.8 | i
i | JELF
JELF | α · · | Resid | | Seattle WA | | De It | | 6 | -1 | -11 | 6 C C | 130 | 989 | R-49 | edo- | - 4e | 0 | 9- | -5 2ft | 4 t | -10 ZIC | -10 41t
Inter | 0
0
0
0
0 | Unheated B | 5 | -11 | R-19 fir | -36 | | Intercept
Slope(DD) | Curve | | Ach | (97.) [000. | . 0003 (. 56)
. 0003 (. 33) | • | Slope/.0016
Curve/.0016 | | | | | | Component
(KBtu) | (/sf)
.75
.45
.36
.25
.25 | 210.32
-13.122
(/ft) | 62
46
46
29
000
393 | (/sf) | 3.39
3.39
3.39
3.39
3.42
3.42
3.42 | ~ DDDD | -5.86 | |------------|-------------|---------------------|---|-------------------------------|---|------------|---|--|--| | | ס | Deita Co
(MBtu) | | (DD)
(DDS)
sement | 18
17
17
17
17
17
(DD)
(DD) | | .000
.07
.07
.07
.07
.07
.00
.00) | 9 | (DD)
(DDS)
Btu
Btu
Btu | | | ooling Load | , | We | Sloper
Curve
Heated Bas | R-0
R-5
Aft
R-5 Aft
R-10 Aft
R-10 Aft
Inter
Slope
Curve | Crawl | R-6
R-11 flr
R-19 flr
R-30 flr
R-38 flr
R-49 flr
Interc
Slope(Curve(| Window U-v
1-Pane
2-Pane
3-Pane
R-10 | Slope(DD)
Curve(DD)
2.53 MBtu
1.22 MBtu
.07 MBtu | | | ŭ | mponent
(KBtu) | (/sf)
1.96
86
63
47
47
26 | 453.70
-22.374
(/ft) | -2.46
-1.96
-1.62
-1.79
-1.29
850
-378.83 | . (/sf) | 03
18
24
28
38
38
34.64 | /sf flr)
.04
.03 | 125
104
104 = | | O* _ | | elta Co
(MBtu) | | (\$00)
(00) | 23
22
28
21
19
(DD)
-(DD) | Basement | 18
05
01
.01
01
01
00
00
00 | /) noi.
.00
.00
.00. | ELF
Bas
Typica
esidua | | g Series | | ٥ | C C C C C C C C C C C C C C C C C C C | Slope
Curve
Slab | R-6
R-5 2ft
R-5 4ft
R-10 2ft
R-10 4ft
Interc | Unheated E | R-0
R-11 fir
R-19 fir
R-3Ø fir
Interd
Slope(
Curve(| Infiltrat
ELF Ach
.0007(.57)
.0005(.41)
.0003(.24) | Slope/.0011
Curve/.0011 | | ype Siding | | (KBtu) |
(/sf)
28.88
13.18
16.87
16.87
7.15
3.91 | 1942.54
76.759
(/ft) | 130.69
80.69
63.52
69.19
46.52
.000
342.38 | (/sf) | 18.28
.87
-1.81
-3.39
-3.75
-7.153
732.77 | (/sf)
120.18
48.96
30.69
9.20 | 26.553 | | Prototyp | _ | elta Co
(MBtu) | 6.44
6.47
6.47
6.47
6.47
6.47
6.86
6.47 | (DD) 4
(DDS) sement | -7.05
-8.65
-9.06
-8.89
-9.57
(DD) 4
(DD) - | | -18.45
-12.65
-13.08
-13.22
-13.24
-13.84
(DD) 4 | . 00
-10.26
-12.89
-15.98 | 3 DDS) 3 Ctu tu tu tu tu | | MApartment | ating Load | ۵ | W R R - 0 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 | Slope
Curve
Heated Ba | R-6
R-5
Aft
R-5
Bft
R-10
Aft
R-10
Bft
Inter
Slope
Curve | Crawi | R-0
R-11 flr
R-19 flr
R-30 flr
R-49 flr
R-49 flr
Slope | Window U
1-Pane
2-Pane
3-Pane
R-10 | Slope
Curve (
66.96 MB
18.54 MB
4.56 MB | | WYEC | Дea | omponent
(KBtu) | 31.55
11.55
11.55
8.85
6.04
8.85
3.85
9.43
2.43
8.85 | 488.24
28.114
(/ft) | 86.69
49.52
37.35
43.35
27.69
124.738
99.812 | (/sf) | 6.53
1.00
90
-2.12
-5.506
4664.08 | (/sf flr) v
14.23
9.51
5.32 | 15.770
6.511
6 Load = 1 Load = 1 Load = 1 | | ₩A | | Delta Com
(MBtu) | ing
-11.75
-13.62
-15.31
-15.87
-16.64
-17.10 | (00)
(00s) - | -8.37
-9.48
-9.85
-9.67
-10.14
(cept
(DD) - | Basement | -7.06
-10.37
-11.56
-12.24
(DD)
(DD) | on
-5.66
10.69 | ELF
ELF
Basi
Typica
esidua | | Seattle M | | ن | 0 | Slope
Curve
Slab | 100 24tt
100 24tt
100 24tt
100 24tt
100 20 20 20 20 20 20 20 20 20 20 20 20 2 | Unheated | R-0
R-11 flr
R-19 flr
R-3Ø flr
Interc
Slope | Infiltrati
ELF Ach
.0007(.76)
.0005(.56)
.0003(.33)- | Slope/.0011
Curve/.001 | | ۰ | Cooling Load | a Component Delta Component
tu) (KBtu) (MBtu) (KBtu) | .00 7.04 R-0 .00 3
38 2.89 R-7 -1.90 1 | .40 2.23 R-11 -2.17 1.5 | .39 R-19 -2.74 1.0
.05 R-27 -3.07 .7
.85 R-34 -3.27 .6
.67 |) 1544.34 Slope(DD) 809
5) -60.337 Curve(DDS) -28. | (/ft) Heated Basement $(/ft)$ | -5.92 -7.51 R-Ø -3.3Ø 8.28
-5.9Ø -7.39 R-5 4ft -4.05 3.76
-5.82 -6.9Ø R-5 8ft -4.11 3.4Ø
-5.89 -7.33 R-1Ø 4ft -4.25 2.55
-5.77 -6.6Ø R-1Ø 8ft -4.3Ø 1.69
pt -4.82 Intercept .0ØØ
D) -61Ø.Ø1 Slope(DD) 16Ø.33
DS) 32.284 Curve(DDS) 1.0Ø5 | ement (/sf) Crawi (/sf) | 3.30 .89 R-0 .00 3.04
78 2.53 R-11 fir 1.07 3.73
10 2.97 R-19 fir 1.22 3.83
.33 3.25 R-30 fir 1.33 3.90
R-38 fir 1.35 3.91
R-49 fir 1.42 3.96
t 4.002 Intercept 4.043
) -1020.56 Slope(DD) -185.43
S) 80.745 Curve(DDS) -2.153 | n (/sf flr) Window U-value (/sf) .00 1.70 1-Pane .00 2.0975 1.22 2-Pane21 .95 1.50 .73 3-Pane27 .60 R-1035 .19 | LF 2.435 Slope(DD) 82.23
LF .000 Curve(DDS)121 | Base Load = 27.97 MBtu Typical Load = 10.70 MBtu esidual Load = -2.06 MBtu | |---------------------|--------------|---|--|----------------------------------|--|---|-------------------------------|---|-------------------------|--|--|---|--| | Siding Series Two | | nent Delta
Btu) (MBti | eiling
-0
-7 | .87 R-11
.78 R-19 | .74
.86
.70 R-30
R-38
R-49
R-60 | 1.60 Slope(DD
.360 Curve(DD | (/ft) Slab | 9.86 R-0
2.51 R-5 2ft
3.41 R-5 4ft
5.52 R-10 2ft
1.36 R-10 4ft
6.97 Slope(D
5.97 Slope(D | (/sf) Unheated Bas | 5.10 R-0 -3.
1.34 R-11 flr
99 R-19 flr
2.41 R-30 flr
2.74 Intercept Slope(DD)
3.67 Intercept Slope(DD) | (/sf) Infiltratio
ELF Ach
12.34 .0007(.48)
53.20 .0005(.34)
33.83 .0003(.20) - | 9.24 Slope/.001E
.325 Curve/.001E | ⊢ & | | One Story Prototype | sating Load | Delta Compon
(MBtu) (KB | . 68 2
13.51 1 | -11 -15.43
-13 -17.78 | -19 -18.95
-27 -21.07
-34 -22.37 | e(DD) 48:
e(DDS) -8: | Heated Basement (, | R-0
R-5 4ft -14.53 55
R-5 8ft -16.04 4
R-10 8ft -15.69 4
R-10 8ft -18.04 3
Slope(DD) 314
Curve(DDS) -29 | Craw! (| R-0
R-11 ftr -21.19 1
R-19 ftr -24.77
R-30 ftr -26.98 -2
R-36 ftr -28.96 -3
R-49 ftr -28.90 -3
Intercept -5.3
Slope(DD) 4421
Curve(DDS) -65. |) Window U-value (60 111 2-Pane -10.93 5 3-Pane -14.51 3 R-10 -18.72 1 | Slope(DD) 473:
Curve(DDS) -18 | = 124.39 MBtu
= 38.43 MBtu
= 1.98 MBtu | | Washington DC WYEC | ⊕
⊕ | Delta Component
(MBtu) (KBtu) | eiling (/sf
-0 .00 25.6
-7 -23.74 10.2 | -11 -27.53 7.7
-19 -30.93 5.5 | R-22 -32.24 4.69
R-30 -33.99 3.55
R-38 -35.05 2.87
R-49 -35.98 2.26
R-60 -36.58 1.87 | Slope(DD) 5170.37
Curve(DDS) -143.062 | Slab (/ft) | R-0
R-5 2ft -20.11 18.89
R-5 4ft -21.23 12.15
R-10 2ft -20.84 14.50
R-10 4ft -22.40 5.10
Intercept -14.360
Slope(DD) 5745.95
Curve(DDS) -80.642 | Unheated Basement (/sf) | R-0
R-11 flr -21.18 1.34
R-19 flr -24.2565
R-30 flr -26.22 -1.93
Intercept -5.364
Slope(DD) 4660.51
Curve(DDS) -377.503 | Infiltration (/sf flr)
ELF Ach
.0007(.79) .00 14.43
.0005(.56) -6.50 10.21
.0003(.36)-12.88 6.07 | Slope/.001ELF 19.935
Curve/.001ELF .974 | Base Load :
Typical Load :
Residual Load : | | | | (KBtu) | (/sf)
2.76
1.36
1.10
.85
.72
.52 | 514.26
350
(/ft) | 7.90
3.16
3.15
2.15
1.65
134.18 | (/sf) | 2.49
3.61
3.76
3.88
3.91
3.99
4.125
311.15 | (/sf)
-4.64
-4.15
-2.75
-1.10 | 495.89
12.125 | |-------------------|-------------|--------------------|--|-------------------------------|---|---------|--|---|---| | | - n | Delta Co
(MBtu) | | (DD)
(DDS)
sement | -1.18
-1.36
-1.37
-1.41
-1.43
cept
(DD)
(DD) | | .00
.67
.78
.83
.85
.85
.90
.90
(DD) – | . 00
. 07
. 27
. 51 | (DDS)
(DDS)
Btu
Btu | | | ooling Load | _ | ₩
R-8
R-11
R-13
R-19
R-27 | Slope
Curve | -8 4ft
-5 8ft
-10 4ft
-10 8ft
Inter
Slope
Curve | rawl | -0
-11 fr
-19 fr
-38 fr
-49 fr
Inter
Slope
Curve | ndow U-
1-Pane
2-Pane
3-Pane
R-10 | Slope
Curve
18.67 ME
12.26 ME
5.05 ME | | | Cool | | | I | ~ ~ ~ ~ ~ | Ū | ىد بېد بېد بېد | 1r) ₩ <u>:</u>
55
4 | H II II | | | | omponent
(KBtu) | (/sf)
6.75
6.75
2.56
1.89
1.29
1.09
83
.67 | 1174.17
-5.901
(/ft) | -16.68
-15.68
-14.85
-15.68
-14.18
-16.939
1071.16 | t (/sf) | . 53
2.19
2.67
2.98
3.805
3.805
127.32
95.178 | 1.35
1.35
.93 | 1.708
.312
e Load
 Load
 Load | | Q | | , G | 22.25.25.25.25.25.25.25.25.25.25.25.25.2 | | 010010 | еше | 1.18
18
.29
.29
t | | LF
FBas
ypica
sidua | | es T _w | | Delta
(MB) | | Pe (DD)
Ve (DDS)
b | t | d Bas | -1
r
r
ercept
ve(DD)
ve(DDS) | 64.84.6
0.0000000000000000000000000000000000 | 001E
001E
T
Re | | Seri | | | - 0 - 1 - 1 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 | SIO
Cur | 24
0 24
0 25
Int
0 0 0 | eate | Int Sio | # *
::::::::::::::::::::::::::::::::::: | lope/.
urve/. | | o, | | | | | 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 | 2
F | 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 | Inf.
ELF.
.00007. | Co | | idin | | <u>، د</u> | ~@@~@~ | | 04440 <i>0</i> 000 | | 101010 0 0 0 0 0 0 0 | | | | S ed/ | | (KBtu) | 722.000.000.000.000.000.000.000.000.000. | 189.6
12.47
(/ft | 92.2
54.5
44.0
46.0
31.2
31.2
0010.5 | (/sf) | 15.55
2.55
2.55
78
-1.06
-1.88
-3.784
805.52 | (/sf)
96.94
40.14
25.20
7.64 | 204.74
17.699 | | Prototype | | ပိုက္ခ | . 60
66.64
8.664
9.35
9.35 | S) 4
S) 4 | 5.64
7.15
7.57
7.57
7.59
8.68
t. 3 | | .000
7.800
9.006
9.97
9.97
t t t | . 66
8.18
8.33
2.86 | (S) | | P | 9 | Delt:
(MB) | 11111 | e (DD)
e (DDS)
la semen | t -5.
t -7.
t -7.
t -7.
t -8.
ercept
Pe (DD) | | 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - | - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 | e (DD)
e (DDS)
MBtu
MBtu
MBtu | | To⊮n | g Loa | | W X X 2 X X 2 X X X X X X X X X X X X X | Slop
Curv | 8 4 ft
8 A ft
Interve | - | 0889
0886
085
085
085
085
085
085
085
085
085
085 | Jow U-Pane | Slop
Curv
.80 | | P
. <u>.</u> | atin | | | T
0
w | 88 - 88 - 88 - 88 - 88 - 88 - 88 - 88 | Cra | ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ | Wind
Wind
Wind
Wind
Wind | 58
10 | | Ų | Ţ | ent
tu) | sf)
711
. 229
. 31
. 38
. 78
. 78 | .24
963
ft) | 2 55
4 4 5 5 5
2 6 5 3
2 6 5 3 | sf) | 282
282
282
282
283
586 | f1r)
.88
.67 | 6866
687
687
687
687
687
687 | | WYE | | ompon
(KB |)001
7001
7001
7001 | 4873
-61. | 8 1 1 2 1 1 1 2 1 1 1 2 1 1 1 2 1 |); | .3.
-3.
3583 | (/sf
12
8
8 | 7.4. | | 20 | | <u>.</u> | 0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.0 | (\$00)
(00) | -7.64
-8.55
-8.85
-8.75
-9.06
(DD) | sешел | -5.64
-8.36
-9.16
-9.72
-9.72
DS) | on | JELF
JELF
Base
Typica
Residua | | | | Delta
(MBt | | 9 0 | ~ ~ ~ ~ | d Ba | 7 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 | Ach
Ach
. 583
. 363 | 99. | | Washington | | | 0 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 | S S S | 0.0 | heate | പരമ | Infiltr
ELF Aci
0007(.8
0005(.5) | lope/
urve/ | | æ.
★ | | | | | 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 | 2 | 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 | нщ <u>я</u> | ្តិ | | Cooling Load | Delta Component
(MBtu) (KBtu) | Wall (/sf) R-0 .000 2.46 R-746 .99 R-1153 .78 R-1360 .56 R-2767 .34 R-3469 .26 | Slope(DD) 297.48
Curve(DDS) 29.602
Heated Basement (/ft) | -6 4ft -1.04 8.
-5 8ft -1.19 3.
-10 4ft -1.23 2.
-10 8ft -1.24 1.
Intercept .0
Intercept .0
Slope(DD) 128. | R-Ø 2.14 R-11 flr .63 3.20 R-19 flr .74 3.37 R-38 flr .84 3.53 R-49 flr .89 3.62 Intercept 3.796 Slope(DD) -373.34 Curve(DDS) 10.134 | r) Window U-value (/sf) 1-Pane .00 -3.89 2-Pane .05 -3.55 3-Pane .22 -2.35 R-10 .4294 | Slope(DD) -425.32
Curve(DDS) 10.524
= 16.97 MBtu
= 11.29 MBtu | |---|----------------------------------|--|---|---|--|---|---| | Series T¥o | Delta Component
(MBtu) (KBtu) | Ceiling R-0 R-0 R-7 -2.39 2.26 R-11 -2.77 1.62 R-19 -3.11 1.05 R-36 -3.22 87 R-38 -3.44 -49 R-49 -3.53 -3.53 | Slope(DD) 918.63
Curve(DDS) 22.452
Slab (/ft) | 2ft -1.77 -16.
4ft -1.71 -14.
Ø 2ft -1.73 -14.
Ø 4ft -1.69 -13.
Intercept -9.6
Stope(DD) -1212.
Curve(DDS) 57.0 | Unheated Basement (/sf) R-0 R-11 flr19 1.83 R-19 flr .06 2.23 R-30 flr .21 2.49 Intercept 3.185 Slope(DD) -943.48 Curve(DDS) 78.376 | Infiltration (/sf flu
ELF Ach
.0007(.48) .00 1.44
.0005(.34)47 1.05
.0003(.20)96 .64 | Slope/.001ELF 2.208
Curve/.001ELF208
Base Load
Typical Load
Residual Load | | MApartment Prototype Sidir
eating Load | Delta Component
(MBtu) (KBtu) | Wall R-0 R-0 R-7 R-7 R-11 R-11 R-11 R-13 R-13 R-15 R-27 R-27 R-34 R-34 R-34 R-34 R-34 R-34 R-34 R-34 | Slope(DD) 4076.50
Curve(DDS) 40.965
Heated Basement (/ft) | -6 .73 109.
-5 4ft -8.10 64.
-5 8ft -8.47 51.
-10 4ft -8.41 53.
-10 8ft -8.92 36.
Intercept .0
Intercept .0 | Crawl R-0 R-10 R-10 R-11 flr -8.04 3.30 R-19 flr -9.33 1.14 R-30 flr -10.2742 R-49 flr -10.78 -1.26 Intercept -3.223 Slope(DD) 3918.12 Curve(DDS) -6.356 |) Window U-value (/sf)
1-Pane .00 96.07
2-Pane -8.31 38.40
3-Pane -10.38 24.02
R-10 -12.81 7.11 | Slope(DD) 2964.96
Curve(DDS) 25.537
= 55.40 MBtu
= 14.55 MBtu | | Washington DC WYEC | Delta Component
(MBtu) (KBtu) | Ceiling (/sf) R-0 R-7 -9.65 9.92 R-11 -11.19 7.35 R-19 -12.57 F.04 R-22 -13.05 R-38 -14.07 R-49 -14.38 2.03 R-60 -14.58 1.69 | Slope(DD) 4593.79
Curve(DDS) -35.121
Slab (/ft) | -8.39 54.
t -9.13 29.
t -9.33 22.
t -9.26 25.
t -9.54 16.
ercept -2.1
pe(DD) 5257. | Notested Basement (/sf) R-0 R-11 flr -8.90 1.87 R-19 flr -9.66 .59 R-30 flr -10.1522 Intercept -2.508 Slope(DD) 3145.91 Curve(DDS) -309.562 | Infiltration (/sf flr.
ELF Ach
.0007(.83) .00 12.69
.0005(.58) -4.92 8.60
.0003(.35) -9.38 4.88 | Slope/.001ELF 14.854
Curve/.001ELF 4.688
Base Load :
Typical Load :
Residual Load : | ## Tables for Mass Walls and Window Solar Gain Measures Section 3.B contain tables of insulation measures in mass walls and window solar gain measures for the one-story prototype building in 45 base locations. For each mass wall
measure, the tables show the Δ load in MBtu, and the component load in kBtu normalized by ft² relative to the R-0 wood frame wall. Following the Δ and component loads, the tables give quadratic regression coefficients for the mass walls, with the linear coefficient listed as "Slope", the quadratic coefficient as "Curve", and the intercept relative to the wood-frame wall as "Intercept". For window solar gain, the tables give first the Δ loads for 184.8 ft² of double and triple-pane windows of average orientation relative to single-pane due to changes in shading coefficients. These Δ loads should be added to the Δ loads for window U-values in Section 3.A to derive the net changes in building loads. Component loads are not shown since they will vary depending on the total amount of solar gain, as explained in Section 2.E. Following the Δ loads, the tables give the coefficients for each cardinal orientation (α), and a fifth coefficient for solar usability (β) based on Equation 11. The units for the α 's are kBtu/ft², the β 's are dimensionless. The intercepts from the regressions are not used. Albuquerque NM One Story Prototype Mass and Window runs | 20420.420.1 | ricoodype mass and window runs | |--|--| | Heating Load | Cooling Load | | Delta Component | Delta Component | | (MBtu) (KBtu) | (MBtu) (KBtu) | | 95 lb Mass Wall | 95 lb Mass Wall | | R-O 3.57 20.81 | R-0 -1.98 1.95 | | R-5 -10.95 7.88 | R-5 -4.4423 | | R-10 -15.97 3.42 | R-10 -5.1385 | | R-15 -18.11 1.51 | R-15 -5.40 -1.09 | | R-30 -20.5061 | R-30 -5.75 -1.40 | | Intercept973
Slope(DD) 3400.08 | Intercept -1.229 | | Slope(DD) 3400.08 | Slope(DD) 397.76 | | Curve(DDS) -3.063 | Curve(DDS) 16.309 | | 120 lb Mass Wall | 120 lb Mass Wall | | R-0 2.98 20.28 | R-0 -2.59 1.41 | | R-5 -11.22 7.64 | R-5 -4.7047 | | R-5 -11.22 7.64
R-10 -16.15 3.26
R-15 -18.27 1.37 | R-10 -5.36 -1.05 | | R-15 -18.27 1.37 | R-15 -5.61 -1.28 | | R-30 -20.6474 | R-30 -5.93 -1.56 | | Intercept -1.071 | Intercept -1.397 | | Slope(DD) 3373.34 | Intercept -1.397
Slope(DD) 400.30 | | Intercept -1.071
Slope(DD) 3373.34
Curve(DDS) -7.793 | Curve(DDS) 8.523 | | Log Mass Wall | log Mass Wall | | 4in -5.92 12.36 | Log Mass Wall
4in -1 81 2 11 | | 6in -11.65 7.26 | 4in -1.81 2.11
6in -3.59 .52
8in -4.1901
10in -4.3314
12in -4.3616 | | 8in -14.48 4.74 | 8in -4.1901 | | 10in -16.05 3.35 | 10in -4.3314 | | 12in -17.06 2.45 | 12in -4.3616 | | Intercept .357
Slope(DD) 2419.12 | Intercept .918 | | Slope(DD) 2419.12 | Slope(DD) -898.60 | | Curve(DDS) 250.334 | Intercept .918 Slope(DD) -898.60 Curve(DDS) 316.032 | | Window Solar Gain | | | Deltas for Average Window O | rientations (MBtu) | | 1-Pane .00 | 1-Pane .00 | | 2-Pane .83 | 2-Pane 67 | | 3-Pane 1.55 | 3-Pane -1.22 | | Alphas (KB | tu/sf) Beta Intercept | | North East | South West | | • | -127.970 -64.114 .013047058493 | | Cooling 19.923 41.398 | 30.058 46.376 .013036058951 | | | | | Heating Load | Cooling Load | |--|--| | Delta Component
(MBtu) (KBtu) | Delta Component
(MBtu) (KBtu) | | R-O -1.25 14.13
R-5 -12.72 3.93
R-10 -16.72 .37
R-15 -18.44 -1.16
R-30 -20.47 -2.97
Intercept -3.141 | 95 lb Mass Wall R-0 -4.3565 R-5 -6.56 -2.62 R-10 -7.25 -3.23 R-15 -7.52 -3.47 R-30 -7.89 -3.80 Intercept -3.719 Slope(DD) 444.17 Curve(DDS) 6.287 | | R-10 -16.86 .24
R-15 -18.56 -1.27
R-30 -20.57 -3.06 | 120 lb Mass Wall R-0 -4.79 -1.04 R-5 -6.86 -2.88 R-10 -7.46 -3.42 R-15 -7.71 -3.64 R-30 -8.07 -3.96 Intercept -3.834 Slope(DD) 397.94 Curve(DDS) 7.285 | | Log Mass Wall 4in -8.96 7.27 6in -13.31 3.40 8in -15.53 1.43 10in -16.81 .29 12in -17.6546 Intercept -2.315 Slope(DD) 2258.23 Curve(DDS) 129.145 | Log Mass Wall 4in -4.5482 6in -5.90 -2.03 8in -6.52 -2.58 10in -6.75 -2.79 12in -6.85 -2.87 Intercept -2.741 Slope(DD) -78.25 Curve(DDS) 156.564 | | Window Solar Gain | | | Deltas for Average Window Oriental
1-Pane .00
2-Pane .57
3-Pane 1.08 | tions (MBtu)
1-Pane .00
2-Pane73
3-Pane -1.33 | | Alphas (KBtu/sf) North East South Heating -30.880 -50.604 -77.43 Cooling 30.841 49.814 42.05 | 35 -46.923 .018499073908 | Birmingham AL One Story Prototype Mass and Window runs Heating Load Cooling Load | Heating Load | Cooling Load | |---|--| | Delta Component
(MBtu) (KBtu) | Delta Component
(MBtu) (KBtu) | | 95 lb Mass Wall R-0 2.55 14.86 R-5 -7.49 5.93 R-10 -11.04 2.77 R-15 -12.56 1.41 R-30 -14.3921 Intercept496 Slope(DD) 2520.83 Curve(DDS) -19.197 | 95 b Mass Wall R-070 3.41 R-5 -3.78 .67 R-10 -4.7923 R-15 -5.1959 R-30 -5.74 -1.08 Intercept -1.064 Slope(DD) 680.00 Curve(DDS) 2.898 | | 120 lb Mass Wall R-0 2.18 14.53 R-5 -7.66 5.78 R-10 -11.16 2.66 R-15 -12.66 1.33 R-30 -14.4829 Intercept559 Slope(DD) 2503.51 Curve(DDS) -22.049 | 120 lb Mass Wall R-0 -1.07 3.08 R-5 -4.02 .45 R-10 -4.9941 R-15 -5.4279 R-30 -5.98 -1.29 Intercept -1.288 Slope(DD) 704.31 Curve(DDS) -2.655 | | Log Mass Wall 4in -4.09 8.95 6in -8.04 5.44 8in -10.01 3.68 10in -11.14 2.68 12in -11.87 2.03 Intercept .415 Slope(DD) 1863.08 Curve(DDS) 143.745 | Log Mass Wall 4in -1.58 2.62 6in -3.18 1.20 8in -3.90 .56 10in -4.22 .28 12in -4.37 .14 Intercept .142 Slope(DD) 73.13 Curve(DDS) 158.678 | | Window Solar Gain | | | Deltas for Average Window
1-Pane .00
2-Pane .55
3-Pane 1.04 | Orientations (MBtu) 1-Pane .00 2-Pane86 3-Pane -1.57 | | Alphas (
North Eas
Heating -30.264 -57.61
Cooling 37.149 73.28 | t South West
3 -74.012 -39.414 .019566010262 | | Heating Load | Cooling Load | |---|---| | Delta Component
(MBtu) (KBtu) | Delta Component
(MBtu) (KBtu) | | 95 lb Mass Wall R-0 7.60 48.57 R-5 -22.35 21.92 R-10 -34.23 11.35 R-15 -39.40 6.75 R-30 -45.87 .99 Intercept479 Slope(DD) 9202.32 Curve(DDS) -219.660 | 95 lb Mass Wall R-0 -1.76 .36 R-5 -3.0075 R-10 -3.2597 R-15 -3.34 -1.05 R-30 -3.44 -1.14 Intercept961 Slope(DD) 74.53 Curve(DDS) 20.372 | | 120 lb Mass Wall R-0 7.20 48.22 R-5 -22.56 21.73 R-10 -34.38 11.21 R-15 -39.54 6.62 R-30 -45.98 .89 Intercept557 Slope(DD) 9174.09 Curve(DDS) -221.212 | 120 lb Mass Wall R-0 -2.2811 R-5 -3.2698 R-10 -3.44 -1.14 R-15 -3.51 -1.20 R-30 -3.64 -1.32 Intercept -1.123 | | Log Mass Wall 4in -13.60 29.71 6in -25.06 19.51 8in -31.28 13.97 10in -35.10 10.57 12in -37.70 8.26 Intercept 1.008 Slope(DD) 8129.08 Curve(DDS) 25.402 | Log Mass Wall 4in -1.19 .86 6in -2.2508 8in -2.5837 10in -2.6241 12in -2.6039 Intercept .452 Slope(DD) -737.40 Curve(DDS) 217.752 | | Window Solar Gain | | | Deltas for Average Window
1-Pane .00
2-Pane 1.28
3-Pane 2.37 | Orientations (MBtu) 1-Pane 2-Pane 3-Pane76 | | Alphas (
North Eas
Heating -49.936 -95.54
Cooling 7.328 14.58 | t South West
8 -162.236 -85.817 .006586252503 | Boise ID One Story Prototype Mass and Window runs | Heating Load | Cooling Load | | |--|--|-----------------------| | Delta Component
(MBtu) (KBtu) | Delta Component
(MBtu) (KBtu) | | | 95 lb Mass Wall R-0 7.03 33.76 R-5 -15.29 13.90 R-10 -23.25 6.81 R-15 -26.68 3.76 R-30 -30.82 .08 Intercept684 Slope(DD) 5715.33 Curve(DDS) -53.571 | R-5 -3.8258 R-10 -4.32 -1.03 R-15 -4.50 -1.19 R-30 -4.70 -1.36 Intercept -1.200 | | | 120 lb Mass Wall R-0 6.51 33.30 R-5 -15.52 13.69 R-10 -23.43 6.65 R-15 -26.83 3.63 R-30 -30.9403 Intercept776 Slope(DD) 5692.28 Curve(DDS) -57.676 | Curve(DDS) 17.437 | | | Log Mass Wall 4in -8.54 19.90 6in -16.87 12.49 8in -21.12 8.71 10in -23.66 6.45 12in -25.35 4.94 Intercept .781 Slope(DD) 4683.76 Curve(DDS) 192.445 Window Solar Gain | Log Mass Wall 4in -1.54 1.45 6in -2.95 .19 8in -3.4525 10in -3.5635 12in -3.5635 Intercept .503 Slope(DD) -732.26 Curve(DDS) 254.814 | | | Deltas for Average Wi
1-Pane .00
2-Pane 1.08
3-Pane 2.02 | ndow Orientations (MBtu) 1-Pane .00 2-Pane54 3-Pane97 | | | North
Heating -50.481 -8 | as (KBtu/sf) Beta
East South West
9.441 -152.201 -83.052 .009550
4.945 23.671 32.459 .044875 | Intercept159518034589 | One Story Prototype Mass and Window runs | Heating Load | Cooling Load | |---|--| | Delta Component
(MBtu) (KBtu) | Delta Component
(MBtu) <u>(</u> KBtu) | | 95 lb Mass Wall R-0 8.65 36.22 R-5 -14.79 15.36 R-10 -23.16 7.91 R-15 -26.77 4.70 R-30 -31.17 .78 Intercept078 Slope(DD) 6042.90 Curve(DDS) -60.464 | 95 lb Mass Wall R-0 -1.13 47 R-5 -2.2351 R-10 -2.5176 R-15 -2.6185 R-30 -2.7597 Intercept892 Slope(DD) 139.33 Curve(DDS) 10.996 | | 120 b Mass Wall R-0
| 120 lb Mass Wall R-0 -1.52 .12 R-5 -2.4571 R-10 -2.6992 R-15 -2.78 -1.00 R-30 -2.90 -1.11 Intercept -1.015 Slope(DD) 124.22 Curve(DDS) 8.671 | | Log Mass Wall 4in -8.50 20.96 6in -16.70 13.66 8in -21.08 9.76 10in -23.81 7.33 12in -25.66 5.69 Intercept .462 Slope(DD) 5711.69 Curve(DDS) 30.934 | Log Mass Wall 4in78 .78 6in -1.55 .09 8in -1.9123 10in -2.0132 12in -2.0535 Intercept216 Slope(DD) -135.91 Curve(DDS) 102.936 | | Window Solar Gain Deltas for Average Window Orienta 1-Pane .00 | 1-Pane .00 | | 2-Pane .98
3-Pane 1.82 | 2-Pane 44
3-Pane 80 | | Alphas (KBtu/sf) North East South Heating -43.297 -72.903 -121.59 Cooling 13.035 21.663 20.10 | 98 -69.021 .008890098387 | Brownsville TX One Story Prototype Mass and Window runs | | | 33. 7 1 1 0 0 0 | oype mass | and window | runs | |----------------------------|--|--------------------------|---|------------------------|-----------| | Не | ating Load | | Со | oling Load | | | Delta | Component | | Dolto | C | | | (MBt | u) (KBtu) | | | Component
u) (KBtu) | | | (| -, () | | (MDC | u) (NDCu) | | | 95 lb Ma: | ss Wall | | 95 lb Ma | ss Wall | | | R-0 - | .12 3.17
.00 .61
.8515
.2147
.5274 | | R-0 | .55 5 55 | | | R-5 -3 | .00 .61 | | R-5 -3 | .55 5.55
.94 1.55 | | | R-10 -3 | .8515 | | R-10 -5 | .59 .08 | | | R-15 -4 | .2147 | | R-15 -6 | .2450 | | | R-30 -4 | .5274 | | R-30 -7 | .01 -1.18 | | | Intercept | 710
461.04 | | Intercept | -1.391 | | | Slope(DD) | 461.04 | | | 1110.99 | | | Curve(DDS) | 20.259 | | Curve(DDS) | -6.258 | | | 120 lb Mas | W-11 | | | | | | D_O ID Mas | SS Wall | | 120 lb Mas | | | | R-0
R-5 -3.
R-10 -3. | 14 2.89 | | R-0 | .36 5.38 | | | N-3 -3.
P_10 3 | .14 .48 | | R-5 -4 | .17 1.35 | | | R-15 -4. | 9025 | | R-10 -5 | .7809 | | | R-30 -4. | 6081 | | K-15 -6 | .4770 | | | Intercept | 772 | | R-30 -7 | | | | Slope (DD) | 773
451.18
17.241 | | Intercept | -1.611 | | | Curve (DDS) | 17 0/1 | | STope (DDC) | 1124.18 | | | cui ve (DDS) | 17.241 | | Curve(DDS) | -7.138 | | | Log Mas | s Wall | • | Log Mas | s Wall | | | 4in −1. | 51 1.93 | | 4in -1.
6in -3.
8in -4.
10in -5. | 87 3.39 | | | 6in -2. | 87 .72 | | 6in -3. | 47 1.97 | | | 8in -3. | 47 .19 | | 8in -4. | 47 1.08 | | | 10in -3. | 7607 | | 10in -5. | 06 .55 | | | 12in -3. | | | 12111 -0. | 40 .Z1 | | | Intercept | 408 | | Intercept | -1.315 | | | Slope(DD) | 210.06 | | Slope(DD) | 1461.57 | | | Curve(DDS) | 111.361 | | Intercept
Slope(DD)
Curve(DDS) | -39.888 | | | Window Sola | ar Gain | | | | | | Deltas for | Average Wind | dow Orients | tions (MR+ | 1 | | | 1-Pane | .00 | | 1-Pane | .00 | | | 2-Pane | .09 | | 2-Pane | -1.42 | | | 3-Pane | .17 | | 3-Pane | -2.60 | | | | A 1 t | //Di / 65 | | | | | | | s (KBtu/sf)
East Sout | .L W | Beta | Intercept | | Heating | • | ast Sout
407 -9.85 | | | 024475 | | Cooling | 60.084 105. | | | | 034475 | | | 55.55 4 105. | 300 01.14 | 28 101,020 | 001616 | 033090 | | | | , 4113 | |--|---|-----------------------| | Heating Load | Cooling Load | | | Delta Component
(MBtu) (KBtu) | Delta Component
(MBtu) (KBtu) | | | 95 lb Mass Wall R-0 9.67 41.19 R-5 -16.84 17.60 R-10 -26.43 9.07 R-15 -30.55 5.40 R-30 -35.60 .91 Intercept121 Slope(DD) 6965.89 Curve(DDS) -80.873 | 95 b Mass Wall R-098 .22 R-5 -1.7445 R-10 -1.9261 R-15 -1.9968 R-30 -2.0876 Intercept683 Slope(DD) 86.16 Curve(DDS) 8.529 | | | 120 lb Mass Wall R-0 9.37 40.93 R-5 -17.01 17.45 R-10 -26.55 8.96 R-15 -30.66 5.30 R-30 -35.69 .83 Intercept180 Slope(DD) 6940.05 Curve(DDS) -81.352 | 120 lb Mass Wall R-0 -1.2502 R-5 -1.9060 R-10 -2.0573 R-15 -2.1178 R-30 -2.1885 Intercept760 Slope(DD) 67.77 Curve(DDS) 7.882 | | | Log Mass Wall 4in -9.70 23.95 6in -19.10 15.59 8in -24.11 11.13 10in -27.21 8.37 12in -29.31 6.50 Intercept .642 Slope(DD) 6427.48 Curve(DDS) 53.210 | Log Mass Wall 4in59 .57 6in -1.2401 8in -1.4721 10in -1.5226 12in -1.5428 Intercept .056 Slope(DD) -301.46 Curve(DDS) 111.759 | | | Window Solar Gain Deltas for Average Wi 1-Pane .00 2-Pane .89 3-Pane 1.65 | ndow Orientations (MBtu) 1-Pane .00 2-Pane32 3-Pane57 | | | North
Heating -46.267 -69 | as (KBtu/sf) Beta
East South West
9.270 -99.603 -65.537 .009967
9.563 8.931 10.775 .368728 | Intercept109060077150 | Burlington VT One Story Prototype Mass and Window runs | one Story | rrototype Mass and Window runs | |--|--| | Heating Load | Cooling Load | | Delta Component | Delta Component | | (MBtu) (KBtu) | (MBtu) (KBtu) | | 95 lb Mass Wall | 95 lb Mass Wall | | R-0 10.53 45.34 | R-0 -1.14 .22 | | R-5 -18.58 19.44 | K-5 -1.8743 | | R-10 -29.16 10.02 | R-10 -2.0659 | | R-15 -33.73 5.96 | R-10 -2.0659
R-15 -2.1366
R-30 -2.2576 | | R-30 -39.31 .99 | R-30 -2.2576 | | Intercept169
Slope(DD) 7726.31 | Intercept684
Slope(DD) 112.61 | | Curve(DDS) -96.298 | Slope(DD) 112.61 | | cui ve(DD3) -90.298 | Curve(DDS) 5.208 | | 120 lb Mass Wall | 120 lb Mass Wall | | R-0 10.17 45.02 | R-0 -1 43 - 02 | | R-5 -18.77 19.27 | R-5 -2.0357
R-10 -2.1971
R-15 -2.2677 | | R-10 -29.31 9.89 | R-10 -2.1971 | | R-15 -33.85 5.85 | R-15 -2.2677 | | R-30 -39.42 .89 | R-30 -2.3182 | | Intercept247
Slope(DD) 7702.96 | Intercept728 | | Curve(DDS) -97.826 | Slope(DD) 75.47
Curve(DDS) 6.204 | | 97.020 | Curve(DDS) 6.204 | | Log Mass Wall | Log Mass Wall | | 4in -10.63 26.51 | 4in71 .61 | | 6in -21.01 17.27 | 6in -1.37 .02 | | 8in -26.56 12.34 | 8in -1.6220 | | 10in -29.99 9.28 | 10in -1.6624 | | 12in -32.30 7.23 | 12in -1.6826 | | Intercept .725
Slope(DD) 7115 70 | Intercept .101 | | Slope(DD) 7115.79
Curve(DDS) 56.936 | Slope(DD) -313.41
Curve(DDS) 115.280 | | 20.000 | Cui ve (DDS) 115.280 | | Window Solar Gain | | | Deltas for Average Window O | rientations (MBtu) | | 1-Pane .00 | 1-Pane .00 | | 2-Pane 1.13 | 2-Pane29 | | 3-Pane 2.10 | 3-Pane51 | | Alphas (KB | cu/sf) Beta Intercept | | North East | South West | | | -139.473 -78.363 .007492184208 | | Cooling 4.186 7.359 | 6.876 8.804 .629224083819 | | | | Charleston SC One Story Prototype Mass and Window runs | | y sypo mass and mindow fulls | |---|--| | Heating Load | Cooling Load | | Delta Component
(MBtu) (KBtu) | Delta Component
(MBtu) (KBtu) | | 95 lb Mass Wall R-0 1.63 12.35 R-5 -7.56 4.17 R-10 -10.75 1.34 R-15 -12.12 .12 R-30 -13.59 -1.19 Intercept -1.461 Slope(DD) 2145.01 Curve(DDS)982 | 95 b Mass Wall
R-098 2.60
R-5 -4.3036
R-10 -5.40 -1.33
R-15 -5.86 -1.74
R-30 -6.22 -2.06
Intercept -2.152
Slope(DD) 626.03
Curve(DDS) 14.810 | | 120 b Mass Wall R-0 | 120 lb Mass Wall R-0 -1.48 2.15 R-5 -4.5961 R-10 -5.69 -1.59 R-15 -6.11 -1.97 R-30 -6.45 -2.27 Intercept -2.356 Slope(DD) 616.13 Curve(DDS) 11.442 | | Log Mass Wall 4in -4.02 7.32 6in -7.83 3.93 8in -9.67 2.30 10in -10.67 1.41 12in -11.32 .83 Intercept435 Slope(DD) 1420.43 Curve(DDS) 193.019 | Log Mass Wall 4in -1.86 1.82 6in -3.49 .37 8in -4.2733 10in -4.6466 12in -4.8584 Intercept -1.228 Slope(DD) 336.34 Curve(DDS) 123.753 | | Window Solar Gain | | | Deltas for Average Williams 1-Pane .00 2-Pane .40 3-Pane .75 | ndow Orientations (MBtu) 1-Pane .00 2-Pane -1.08 3-Pane -1.99 | | North
Heating -23.186 -39 | Beta Intercept East South West 0.311 -63.359 -34.691 .028733048477 0.092 68.165 70.553000637012741 | One Story Prototype Mass and Window runs | eyenne wi | Story Prototype | Mass and Window | runs | |---|--|---|------| | Heating Load | | Cooling Load | | | Delta Component
(MBtu) (KBtu) | | Delta Component
(MBtu) (KBtu) | | | 95 lb Mass Wall R-0 9.28 43.79 R-5 -19.46 18.22 R-10 -29.71 9.09 R-15 -34.11 5.18 R-30 -39.47 .41 Intercept550 Slope(DD) 7364.60 Curve(DDS) -69.619 | 95
R-0
R-5
R-10
R-19
R-30
Inte
Slop
Curv | The Mass Wall -1.5523 -2.1374 0 -2.2182 6 -2.2484 0 -2.2686 ercept716 pe(DD) -7.81 ve(DDS) 13.617 | | | 120 lb Mass Wall R-0 8.70 43.28 R-5 -19.72 17.98 R-10 -29.92 8.91 R-15 -34.29 5.02 R-30 -39.61 .28 Intercept662 Slope(DD) 7339.98 Curve(DDS) -74.163 | 120
R-0
R-5
R-10
R-15
R-30
Inte | 1b Mass Wall -1.8852 -2.2787 0 -2.3392 6 -2.3594 0 -2.3594 ercept799 0 (DD) -9.86 0 (DDS) 9.718 | | | Log Mass Wall 4in -11.00 25.74 6in -21.53 16.37 8in -27.00 11.51 10in -30.28 8.59 12in -32.47 6.64 Intercept 1.024 Slope(DD) 6289.74 Curve(DDS) 191.654 | 4in
6in
8in
10in
12in
Inte
Slop | Mass Wall87 .38 -1.5926 -1.7541 -1.7440 -1.7036 ercept .446 e(DD) -707.48 e(DDS) 176.345 | | | Window Solar Gain | | | | | Deltas for Average W
1-Pane .00
2-Pane 1.56
3-Pane 2.91 | 1-P
2-P | (MBtu) ane .00 ane30 ane53 | | | North | has (KBtu/sf)
East South
24.361 -215.669 -1
4.976 4.187 | Beta
West
16.245 .006116
5.280 2.138813 | | Chicago IL One Story Prototype Mass and Window runs | ricago IL Une | Story Prototype | Mass and Window | runs | |--|-------------------
--|-----------| | Heating Load | | Cooling Load | I | | Delta Component | | D 11 0 | | | (MBtu) (KBtu) | | Delta Component
(MBtu) (KBtu) | | | 95 lb Mass Wall | 95 | lb Mass Wall | | | R-0 8.72 36.99 | R_(|) -1.47 1.02 | • | | R-5 -15.37 15.55 | R_! | -1.47 1.02
5 -3.1951 | | | R-10 -23.98 7.89 | Ř-1 | 10 -3.6390 | ·
1 | | R-15 -27.67 4.61 | R-1 | 5 -3.80 -1.05 | | | R-30 -32.17 .60 | | 30 -4.03 -1.26 | | | Intercept282 | Int | ercept -1.139 | ı | | Slope(DD) 6187.95 | Sid | pe(DD) 234.83 | | | Curve(DDS) -59.731 | Cur | ppe(DD) 234.83
ve(DDS) 15.464 | | | 120 lb Mass Wall | 120 |) lb Mass Wall | | | R-0 8.39 36.70
R-5 -15.56 15.38
R-10 -24.12 7.77
R-15 -27.80 4.49 | R-C | -1.96 .58 | | | R-5 -15.56 15.38 | R-5 | -3.4877 | | | R-10 -24.12 7.77 | R-1 | 0 -3.87 -1.12 | | | R-15 -27.80 4.49 | R-1 | 5 -4.03 -1.26 | | | 11-00 -02.29 .00 | K-3 | 0 -4.24 -1.45 | | | Intercept370
Slope(DD) 6169.21
Curve(DDS) -61.173 | Int | ercept -1.313 | | | Slope(DD) 6169.21 | Slo | pe(DD) 218.78 | | | Curve(DDS) -61.173 | Cur | ve(DDS) 12.519 | | | Log Mass Wall . | Lo | g Mass Wall | | | 4in -8.76 21.44 | 4 i | n -1.22 1.24
n -2.39 .20
n -2.8622
n -3.0236
n -3.0841 | | | 6in -17.28 13.85 | 6 i | n -2.39 .20 | | | 8in -21.83 9.80 | 8 i | n -2.8622 | | | 10in -24.64 7.30 | 10 i | n -3.0236 | | | 12in -26.54 5.61 | 12 i | n -3.0841 | | | Intercept .254 | Int | ercept101 | | | Slope(DD) 5830.35 | Slo | pe(DD) -274.04 | | | Curve(DDS) 47.968 | Cur | ercept101
pe(DD) -274.04
ve(DDS) 163.176 | | | Window Solar Gain | | | | | Deltas for Average W | indow Orientation | s (MBtu) | | | 1-Pane .00 | | Pane .00 | | | 2-Pane 1.04 | | Pane57 | | | 3-Pane 1.94 | 3- | Pane -1.04 | | | • | nas (KBtu/sf) | Beta | Intercept | | North | East South | West | • | | | | -69.295 .008024 | | | Cooling 17.544 3 | 31.802 28.050 | 34.602 .021287 | 7090338 | | | | | • | -205-Cincinnati OH One Story Prototype Mass and Window runs Heating Load Cooling Load Delta Component Delta Component (MBtu) (KBtu) (MBtu) (KBtu) 95 lb Mass Wall 95 lb Mass Wall 7.20 31.19 -13.13 13.10 -20.43 6.60 R-0 R-O -1.65 1.14 R-5 R-5 -3.43 -.44 R-10 -20.43 6.60 R-10 -3.88 -.84 R-15 -23.56 3.82 R-15 -4.07 -1.01 R-30 -27.34 .45 R-30 -4.34 -1.25 Intercept -.305 Intercept -1.109 Slope(DD) 5240.57 Curve(DDS) -51.925 Slope(DD) 268.34 Curve(DDS) 13.299 120 lb Mass Wall 120 lb Mass Wall 6.91 30.93 -13.27 12.97 R-O R-0 -2.18 .67 R-5 R-5 -3.71 -.69 -4.12 -1.06 R-10 -20.53 R-10 6.51 R-15 -23.65 R-30 -27.42 3.74 R-15 -4.29 -1.21 .38 R-30 -4.52 -1.41 Intercept -.365 Intercept -1.260 5228.36 Slope(DD) Slope(DD) 246.03 Curve(DDS) -54.154 Curve (DDS) 10.080 Mass Wall -7.51 18.10 Log Log Mass Wall 4in -1.31 1.45 4in 6in -14.77 11.64 . 30 6in -2.60 8in -18.60 8.23 8in -3.09 10in -20.96 10 i n 6.13 -3.20 -.24 12in -22.55 4.71 -.26 12 i n -3.23 Intercept .358 Intercept .386 4781.17 Slope(DD) -555.20 Slope(DD) Curve(DDS) 67.164 Curve(DDS) 216.966 Window Solar Gain Deltas for Average Window Orientations (MBtu) 1-Pane .00 2-Pane .78 3-Pane 1.45 1-Pane .00 2-Pane -.59 3-Pane 1.45 Alphas (KBtu/sf) Beta Intercept North East South West Heating -37.151 -58.246 -99.364 -54.128 .011555 -.075737 Cooling 20.686 35.141 30.700 36.795 .012903 -.062128 Denver CO One Story Prototype Mass and Window runs | Heating Load | Cooling Load | |---|--| | Delta Component
(MBtu) (KBtu) | Delta Component
(MBtu) (KBtu) | | 95 lb Mass Wall R-0 6.45 34.08 R-5 -16.30 13.84 R-10 -29.33 2.24 R-15 -27.81 3.60 R-30 -31.9711 Intercept807 Slope(DD) 4815.36 Curve(DDS) 87.283 | 95 lb Mass Wall R-0 -2.73 .21 R-5 -4.18 -1.09 R-1083 1.90 R-15 -4.57 -1.43 R-30 -4.68 -1.53 Intercept -1.251 Slope(DD) 749.57 Curve(DDS) -72.467 | | 120 lb Mass Wall R-0 5.75 33.46 R-5 -16.60 13.57 R-10 -24.56 6.49 R-15 -28.00 3.43 R-30 -32.1224 Intercept896 Slope(DD) 5706.74 Curve(DDS) -52.001 | R-10 -4.70 -1.55
R-15 -4.79 -1.63
R-30 -4.90 -1.73
Intercept -1.455
Slope(DD) 80.72 | | Log Mass Wall 4in -8.98 20.35 6in -17.70 12.59 8in -22.10 8.68 10in -24.65 6.41 12in -26.33 4.91 Intercept 1.051 Slope(DD) 4427.88 Curve(DDS) 271.532 | 4in -1.74 1.09 | | Window Solar Gain | | | Deltas for Average Wi
1-Pane .00
2-Pane 1.29
3-Pane 2.42 | ndow Orientations (MBtu) 1-Pane .00 2-Pane51 3-Pane92 | | North
Heating -50.000 -11 | as (KBtu/sf) Beta Intercept
East South West
2.636 -195.523 -98.823 .008103104505
1.240 17.380 23.263 .106055108635 | El Paso TX One Story Prototype Mass and Window runs | Heating Load | Cooling Load | | |---|--|-----------------------| | Delta Component
(MBtu) (KBtu) | Delta Component
(MBtu) (KBtu) | | | 95 lb Mass Wall R-0 1.61 12.17 R-5 -7.62 3.95 R-10 -10.75 1.17 R-15 -12.0802 R-30 -13.39 -1.18 Intercept -1.397 Slope(DD) 1989.41 Curve(DDS) 15.602 | 95 lb Mass Wall R-051 4.29 R-5 -4.19 1.02 R-10 -5.4208 R-15 -5.9555 R-30 -6.60 -1.13 Intercept -1.158 Slope(DD) 856.65 Curve(DDS)769 | | | 120 lb Mass Wall R-0 1.13 11.74 R-5 -7.82 3.77 R-10 -10.90 1.03 R-15 -12.2113 R-30 -13.52 -1.30 Intercept -1.505 Slope(DD) 1989.01 Curve(DDS) 9.322 | 120 lb Mass Wall R-091 3.94 R-5 -4.45 .79 R-10 -5.6427 R-15 -6.1472 R-30 -6.77 -1.28 Intercept -1.284 Slope(DD) 823.39 Curve(DDS)633 | · | | Log Mass Wall 4in -4.09 7.09 6in -7.93 3.68 8in -9.70 2.10 10in -10.64 1.26 12in -11.24 .73 Intercept148 Slope(DD) 1077.01 Curve(DDS) 244.600 | Log Mass Wall 4in -1.97 2.99 6in -3.70 1.45 8in -4.44 .80 10in -4.84 .44 12in -5.01 .29 Intercept .231 Slope(DD) 176.14 Curve(DDS) 155.328 | en e | | Window Solar Gain Deltas for Average Window 1-Pane .00 2-Pane .51 3-Pane .97 | ndow Orientations (MBtu) 1-Pane .00 2-Pane90 3-Pane -1.66 | | | Alph
North
Heating -26.763 -5 | Beta East South West 66.073 -86.146 -46.612 .022735 62.588 44.411 65.974 .003441 | Intercept141425017241 | | ort Worth TX One Stor | y Prototype Mass and Window runs | |---|--| | Heating Load | Cooling Load | | Delta Component | Delta Component | | (MBtu) (KBtu) | (MBtu) (KBtu) | | 95 lb Mass Wall | 95 lb Mass Wall | | R-0 2.57 13.76 | R-0 .51 4.96 | | R-5 -7.15 5.11 | R-5 -3.28 1.58
R-10 -4.63 .38
R-15 -5.2113 | | R-10 -10.50 2.13 | R-10 -4.63 .38 | | R-15 -11.91 .88
R-30 -13.4953 | R-15 -5.2113 | | | R-30 -5.9075 | | Intercept789 | Intercept895 | | Slope(DD) 2243.59
Curve(DDS) 1.204 | Siope(DD) 960.55 | | Curve(DDS) 1.204 | Curve(DDS) -8.064 | | 120 lb Mass Wall | 120 lb Mass Wall | | R-0 2.19 13.43 | R-0 .27 4.74 | | R-5 -7.35 4.94 | R-5 -3.49 1.40 | | R-10 -10.63 2.02 | R-5 -3.49 1.40
R-10 -4.84 .19 | | R-15 -12.03 .77
R-30 -13.6063 | R-15 -5.4030 | | R-30 -13.6063 | R-30 -6.1294 | | Intercept863 | Intercept -1.087 | | Slope(DD) 2220.20 | Slope(DD) 967.92 | | Curve(DDS)778 | Curve(DDS) -9.546 | | Log Mass Wall | Log Mass Wall | | 4in -3.86 8.04 | 4in -1.53 3.14 | | 6in -7.59 4.72 | 6in -2.96 1.87 | | 8in -9.46 3.06 | 4in -1.53 3.14
6in -2.96 1.87
8in -3.80 1.12 | | 10in -10.53 2.11
12in -11.22 1.49 | 10in -4.28 .69 | | 12in -11.22 1.49 | 12in -4.58 .43 | | Intercept109 | Intercept627 | | Slope(DD) 1778.18
Curve(DDS) 133.331 | Slope(DD) 1045.43 | | Curve(DDS) 133.331 | Curve(DDS) 1.657 | | Window Solar Gain | • | | Deltas for Average Window | Orientations (MRtu) | | 1-Pane .00 | 1-Pane .00 | | 2-Pane .46 | 2-Pane88 | | 3-Page 86 | 3-Page 1.60 | 3-Pane Alphas (KBtu/sf) North East South West -23.915 -40.238 -66.500 -37.520 34.790 60.086 48.659 66.413 -1.62 -66.500 -37.520 .023757 -.039180 48.659 66.413 -.000001 -.006814 Beta Intercept . 86 3-Pane Heating Cooling | | y wasana mass and mindow | runs | |---|--|-----------------------| | Heating Load | Cooling Load | | | Delta Component
(MBtu) (KBtu) | Delta Component
(MBtu) (KBtu) | | | 95 b Mass Wall R-0 1.32 13.92 R-5 -8.79 4.93 R-10 -12.22 1.88 R-15 -13.69 .57 R-30 -15.3288 Intercept -1.025 Slope(DD) 2300.44 Curve(DDS) 4.195 | 95 b Mass Wall R-0 -2.35 3.74 R-5 -6.13 .38 R-10 -7.3167 R-15 -7.76 -1.07 R-30 -8.35 -1.60 Intercept -1.407 Slope(DD) 726.94 Curve(DDS) 14.203 | | | 120 lb Mass Wall R-0 .66 13.34 R-5 -9.07 4.68 R-10 -12.42 1.70 R-15 -13.85 .42 R-30 -15.47 -1.02 Intercept -1.134 Slope(DD) 2278.97 Curve(DDS) -2.286 | 120 lb Mass Wall R-0 -3.15 3.03 R-5 -6.6004 R-10 -7.6295 R-15 -8.04 -1.32 R-30 -8.59 -1.81 Intercept -1.550 Slope(DD) 647.27 Curve(DDS) 14.088 | | | Log Mass Wall 4in -4.62 8.64 6in -9.04 4.71 8in -11.07 2.90 10in -12.12 1.96 12in -12.77 1.39 Intercept .603 Slope(DD) 1080.35 Curve(DDS) 305.596 | Log Mass Wall 4in -2.70 3.43 6in -5.15 1.25 8in -6.09 .41 10in -6.36 .17 12in -6.44 .10 Intercept 1.215 Slope(DD) -859.40 Curve(DDS) 383.050 | | | Window Solar Gain | | | | Deltas for Average Win
1-Pane .00
2-Pane .50
3-Pane .95 | dow Orientations (MBtu) 1-Pane .00 2-Pane87 3-Pane -1.60 | | | North
Heating -26.710 -43 | s (KBtu/sf) Beta East South West .924 -73.966 -42.690 .021732 .789 45.688 63.406 .006371 | Intercept089236032326 | Great Falls MT One Story Prototype Mass and Window runs | ole Story |
rrototype Mass and Window runs | |--|--| | Heating Load | Cooling Load | | Delta Component | Dalka Camana | | (MBtu) (KBtu) | Delta Component | | (11500) | (MBtu) (KBtu) | | 95 lb Mass Wall | OF 11 44 W 14 | | R-0 7.85 44.01 | 95 lb Mass Wall | | R-5 -19.95 19.27 | R-0 -1.4904 | | R-10 -30.58 9.81 | R-5 -2.2471 | | R-15 -35.19 5.71 | R-10 -2.3883 | | R-30 -40.8864 | R-15 -2.4387 | | | R-10 -2.3883
R-15 -2.4387
R-30 -2.4892 | | Intercept591 | Intercept786 | | Slope(DD) 8026.11 | Slope(DD) 30.25 | | Curve(DDS) -154.120 | Intercept786
Slope(DD) 30.25
Curve(DDS) 13.760 | | | · | | 120 lb Mass Wall | 120 lb Mass Wall | | R-0 7.38 43.59 | R-0 -1 85 - 36 | | R-5 -20.20 19.04 | R-5 -2.4287 | | R-10 -30.78 9.63 | R-5 -2.4287
R-10 -2.5295 | | R-15 -35.37 5.54 | R-15 -2.5699 | | R-30 -41.04 .50 | R-30 -2.60 -1.03 | | Intercept717 | Intercent _ 994 | | Slope(DD) 8005.86 | Slope(DD) 22 24 | | Curve(DDS) -157.062 | Slope(DD) 22.24
Curve(DDS) 10.474 | | (444) | 10.474 | | Log Mass Wall | Log Mass Wall | | 4in -11.63 26.67 | 4in89 .50 | | 6in -22.18 17.28 | 6in -1.6518 | | 8in -27.81 12.27 | 8in -1.8839 | | 10in -31.26 9.20 | 10in -1.8939 | | 12in -33.57 7.15 | 1011 -1.0939
10:n 1 07 20 | | Intercept 786 | 12in -1.8738 | | Intercept .786
Slope(DD) 7064.56 | Intercept .291 | | Curve(DDS) 82.984 | Slope(DD) -589.79 | | cdi ve(DDS) 82.984 | Curve(DDS) 165.030 | | Window Solar Gain | | | Doltas for Avenue Winds | Iniantations (MDE) | | Deltas for Average Window (1-Pane .00 | · · · · · · · · · · · · · · · · · · · | | | 1-Pane .00 | | _ - | 2-Pane32 | | 3-Pane 2.36 | 3-Pane 57 | | A 1 - L | N. (-1) | | Alphas (KE | | | North East | South West | | Heating -55.712 -104.291 | , :=:::= | | Cooling 3.161 6.517 | 7.467 8.081 .908638023047 | | | | -211-Honolulu HI One Story Prototype Mass and Window runs Heating Load Cooling Load Delta Component Delta Component (MBtu) (KBtu) (MBtu) (KBtu) 95 lb Mass Wall 95 lb Mass Wall R-0 .01 -.07 -.71 1.11 R-0 R-5 -.11 -.03 R-5 -2.96 -.89 R-10 -.11 -.03 R-10 **-**3.78 -1.62 R-15 -.11 -.11 -.03 R-15 -4.18 -1.98 R-30 -.03 R-30 -4.34 -2.12 Intercept -.013 Intercept -2.334 Slope(DD) -5.60 Slope(DD) 476.17 Curve (DDS) 1.408 Curve (DDS) 5.721 120 lb Mass Wall 120 lb Mass Wall R-0 -.09 -.01 R-0 -.98 .87 -.03 R-5 **-.11** R-5 -3.27 -1.17 -.03 R-10 -.11 -4.17 -1.97 R-10 -.11 -.11 R-15 -.03 -4.43 -2.20 R-15 -4.45 -4.52 -2.28 R-30 -.03 R-30 Intercept -.015 Intercept -2.450 Slope(DD) -2.80 Slope(DD) 374.01 Curve(DDS) .704 Curve(DDS) 17.747 Log Mass Wall Log Mass Wall .02 4in -.06 -1.21 .66 4in 6in -.10 -.02 6in -2.21-.23 8in -.11 -.03 8in -2.81 -.76 -2.81 -.76 -3.18 -1.09 10 in -.11 -.03 10in 12in -.11 -.03 12in -3.32 -1.21 Intercept .012 Intercept -2.103 Slope(DD) -32.55 Slope(DD) Curve(DDS) 690.35 Curve (DDS) 8.804 Window Solar Gain Deltas for Average Window Orientations (MBtu) 1-Pane .00 1-Pane .00 2-Pane .00 2-Pane -1.743-Pane .00 3-Pane -3.21 Alphas (KBtu/sf) Beta Intercept North East South -.046 -.071 -.090 West -.071-13.709700 -.000957 Heating 76.444 155.997 125.618 107.318 -.002716 Cooling .086398 Jacksonville FL One Story Prototype Mass and Window runs Heating Load Cooling Load Delta Component Delta Component (MBtu) (KBtu) (MBtu) (KBtu) 95 lb Mass Wall 95 lb Mass Wall .89 R-0 7.56 R-0 -.68 2.90 R-5 -4.86 2.45 . 27 R-5 -3.64 R-10 -6.79 .73 R-10 -4.60 -.59 R-15 -7.60 .01 R-15 -5.06 -1.00 R-30 -8.45 -.75 R-30 -5.58 -1.46 Intercept -.854 Intercept -1.526Slope(DD) 1235.54 Slope(DD) 695.88 Curve(DDS) 9.819 Curve(DDS) -1.535120 lb Mass Wall 120 lb Mass Wall . 54 R-0 7.25 R-0 -1.04 2.58 -5.03 R-5 2.30 R-5 -3.83 .10 .61 R-10 R-10 -6.92-4.84 -.80 -7.71 R-15 -.09 R-15 -1.16 -5.24 R-30 -8.54 -.83 R-30 -5.75 -1.61 Intercept -.919 Intercept -1.690 Slope(DD) 1214.85 Slope(DD) 697.78 Curve(DDS) 7.845 Curve (DDS) -4.874 Mass Wall Log Mass Wall Log 4in -2.56 4.49 4in -1.65 2.04 6in -4.96 2.36 6in -3.01 . 83 8in -6.12 1.33 8in -3.62 . 28 10in -6.75 .76 10in -3.95 -.01 12in -7.14 .42 12in -4.19 -.22 Intercept -.353 Intercept -.590 858.67 Slope(DD) Slope(DD) 408.85 Curve(DDS) 127.305 Curve (DDS) 81.398 Window Solar Gain Deltas for Average Window Orientations (MBtu) 1-Pane .00 .00 -1.12 1-Pane 2-Pane 3-Pane West -24.591 68.217 -2.06 Beta .037142 -.036945 -.000246 -.020907 Intercept 2-Pane 3-Pane Heating Cooling .30 .57 -15.843 44.973 Alphas (KBtu/sf) -45.874 71.588 North East South -28.554 One Story Prototype Mass and Window runs | | and window runs | |--|--| | Heating Load | Cooling Load | | Delta Component
(MBtu) (KBtu) | Delta Component
(MBtu) (KBtu) | | 95 lb Mass Wall R-0 14.23 55.48 R-5 -20.63 24.46 R-10 -33.41 13.08 R-15 -38.95 8.15 R-30 -45.80 2.06 Intercept .524 Slope(DD) 9451.70 Curve(DDS) -135.068 | 95 lb Mass Wall R-00202 R-50202 R-100202 R-150202 R-300202 Intercept018 Slope(DD) .00 Curve(DDS)000 | | 120 lb Mass Wall R-0 14.11 55.37 R-5 -20.70 24.39 R-10 -33.47 13.03 R-15 -39.00 8.11 R-30 -45.85 2.01 Intercept .485 Slope(DD) 9446.60 Curve(DDS) -135.689 | 120 b Mass Wall R-0 | | Log Mass Wall 4in -12.09 32.06 6in -24.05 21.41 8in -30.59 15.59 10in -34.73 11.91 12in -37.57 9.38 Intercept .966 Slope(DD) 9132.54 Curve(DDS) -70.033 | Log Mass Wall 4in0101 6in0202 8in0202 10in0202 12in0202 Intercept007 Slope(DD) -10.88 Curve(DDS) 2.503 | | Window Solar Gain | | | Deltas for Average Wi
1-Pane .00
2-Pane 1.07
3-Pane 1.99 | ndow Orientations (MBtu) 1-Pane .00 2-Pane01 3-Pane01 | | North | as (KBtu/sf) Beta Intercept
East South West
2.496 -114.489 -80.517 .008198 .043927
.023 .047 .057805.213500013247 | Kansas City MO One Story Prototype Mass and Window runs | | · | s sype mass and mindow runs | | |---|--|---|-----| | | Heating Load | Cooling Load | | | | Delta Component
(MBtu) (KBtu) | Delta Component
(MBtu) (KBtu) | | | | 95 lb Mass Wall R-0 6.60 28.92 R-5 -12.26 12.13 R-10 -19.02 6.12 R-15 -21.93 3.53 R-30 -25.46 .38 Intercept311 Slope(DD) 4873.12 Curve(DDS) -49.509 | 95 lb Mass Wall R-031 3.87 R-5 -3.35 1.17 R-10 -4.40 .23 R-15 -4.8416 R-30 -5.5276 Intercept799 Slope(DD) 808.21 Curve(DDS) -10.986 | | | | 120 lb Mass Wall R-0 6.30 28.65 R-5 -12.40 12.01 R-10 -19.14 6.01 R-15 -22.04 3.43 R-30 -25.56 .30 Intercept400 Slope(DD) 4872.57 Curve(DDS) -52.958 | 120 lb Mass Wall R-061 3.61 R-5 -3.55 .99 R-10 -4.55 .10 R-15 -4.9828 R-30 -5.6084 Intercept842 Slope(DD) 755.35 Curve(DDS) -7.972 | | | | Log Mass Wall 4in -6.96 16.85 6in -13.72 10.83 8in -17.29 7.66 10in -19.47 5.72 12in -20.96 4.39 Intercept .353 Slope(DD) 4434.05 Curve(DDS) 65.212 | Log Mass Wall 4in -1.52 2.80 6in -2.97 1.50 8in -3.69 .86 10in -4.05 .54 12in -4.27 .35 Intercept053 Slope(DD) 462.51 Curve(DDS) 86.361 | | | | Window Solar Gain | | | | | Deltas for Average Wir
1-Pane .00
2-Pane .90
3-Pane 1.68 | dow Orientations (MBtu) 1-Pane .00 2-Pane80 3-Pane -1.48 | | | | Alpha
North | s (KBtu/sf) Beta Interc
East South West | ept | | • | Heating -40.535 -83 | .004 -124.884 -54.365 .01096904346
.811 43.036 44.061 .00204404254 | | | | | | | One Story Prototype Mass and Window runs Lake Charles LA Heating Load Cooling Load Delta Component Delta Component (MBtu) (KBtu) (MBtu) (KBtu) 95 lb Mass Wall 95 lb Mass Wall R-0 1.25 8.88 R-0 .28 4.58 R-5 -5.21 3.13 R-5 -3.22 1.46 R-10 -7.40 1.18 R-10 -4.53 .30 -.19 R-15 -8.34 . 35 R-15 -5.08 R-30 -9.36 -.56 R-30 -5.78 -.82 Intercept Intercept -.694 -.980 Slope(DD) 1457.26 Curve(DDS) 4.017 Slope(DD) 965.40 Curve(DDS) -15.040 120 lb Mass Wall 120 lb Mass Wall R-0 .93 8.60 R-0 .16 4.47 -3.45 R-5 -5.37 2.99 R-5 1.26 R-10 -7.51 1.09 -4.71 R-10 .14 R-15 -8.43 . 27 R-15 -5.26 -.35 R-30 -9.46 -.65 -.99 R-30 -5.97 Intercept -.764 Intercept -1.111 Slope(DD) 1445.77 Slope(DD) 930.05 Curve(DDS) 1.351 Curve(DDS) -9.602 Log Mass Wall Log Mass Wall 4in -2.78 5.30 -1.54 2.96 4in -5.41 6in -2.96 6in -2.89 1.76 8in -6.68 1.83 8in -3.63 1.10 10in -7.39 1.19 . 65 10in -4.13 12in -7.84 .79 12in -4.41 .40 Intercept -.106 Intercept -.625 Slope(DD) 1028.28 Slope(DD) 1030.45 Curve(DDS) 126.092 Curve(DDS) -7.148 Window Solar Gain Deltas for Average Window Orientations (MBtu) 1-Pane .00 1-Pane .00 2-Pane .30 2-Pane -1.043-Pane .57 3-Pane -1.90 Alphas (KBtu/sf) North East South -29.136 76.260 -18.513 44.134 Heating Cooling Beta .037026 64.049 70.718 -.001502 -.028693 West -43.239 -26.885 Intercept -.021703 Alphas (KBtu/sf) -24.608 -50.486 -89.326 -44.692 27.688 64.272 51.513 68.666 .005241 North East South Heating Cooling Beta .021445 -.101239 West Intercept Los Angeles CA One Story Prototype Mass and Window runs Heating Load Cooling Load Delta Component Delta Component (MBtu) (KBtu) (MBtu) (KBtu) 95 lb Mass Wall 95 lb Mass Wall R-0 -.04 8.74 R-O -.68 . 10 -7.71 R-5 1.92 R-5 -1.02 R-10 -10.13-.24 R-10 -1.07 -.25 R-15 -11.15 -1.14R-15 -1.13 -.30 R-30 -12.04 -1.93 R-30 -1.16 -.33 Intercept -1.964 Intercept -.266 Slope(DD) 1387.52 Slope(DD) 37.03 Curve(DD\$) 38.930 Curve(DDS) 3.756 120 lb Mass Wall 120 lb Mass Wall R-0 - .79 8.08 R-0 -.78 .01 R-5 -8.02 1.64 R-5 -1.08 -.26 -.44 R-10 -10.36 R-10 -1.16 -.33 R-15 -11.34 -1.31 R-30 -12.19 -2.07 R-15 -1.18 -.35 R-30 -1.22 -.38 Intercept -2.076Intercept -.319Slope(DD) 1357.35 Slope(DD) 35.83 Curve(DDS) 32.164 Curve (DDS) 3.240 Mass Wall Log Mass Wall Log 4in -3.79 -.39 -.75 5.41 . 36 4in 6in -7.37 2.22 6in .04 .85 -8.91 8in 8in -.82 -.02 10in -9.62 . 22 10in -.86 -.06 12in
-10.05 -.16 12in -.88 -.08 -.251 Intercept .154 Intercept Slope(DD) 252.68 Slope(DD) -184.55 Curve(DDS) 337.267 Curve(DDS) 61.916 Window Solar Gain Deltas for Average Window Orientations (MBtu) 1-Pane .00 2-Pane .54 2-Pane -.30 3-Pane 1.03 Alphas (KBtu/sf) Beta Intercept West North East South Heating -44.153 -65.332 -85.665 -69.967 .022196 -.284815 . 489 Cooling . 235 .516 .541247.921203 -.091191 | Heating Load | Cooling Load | |---|--| | Delta Component
(MBtu) (KBtu) | Delta Component
(MBtu) (KBtu) | | 95 b Mass Wall R-0 | 95 lb Mass Wall R-0 -3.19 .38 R-5 -5.12 -1.33 R-10 -5.53 -1.70 R-15 -5.68 -1.83 R-30 -5.84 -1.97 Intercept -1.684 Slope(DD) 136.13 Curve(DDS) 29.838 | | 120 lb Mass Wall R-0 2.82 25.17 R-5 -15.00 9.31 R-10 -21.40 3.61 R-15 -24.18 1.14 R-30 -27.38 -1.71 Intercept -2.265 Slope(DD) 4554.99 Curve(DDS) -41.217 | 120 lb Mass Wall R-0 -3.9933 R-5 -5.52 -1.69 R-10 -5.82 -1.96 R-15 -5.93 -2.05 R-30 -6.06 -2.17 Intercept -1.839 Slope(DD) 90.66 Curve(DDS) 25.174 | | Log Mass Wall 4in -7.69 15.81 6in -15.37 8.98 8in -19.13 5.63 10in -21.16 3.83 12in -22.46 2.67 Intercept .109 Slope(DD) 2932.32 Curve(DDS) 381.131 | Log Mass Wall 4in -2.15 1.31 6in -3.9226 8in -4.4775 10in -4.4977 12in -4.4372 Intercept .877 Slope(DD) -1391.16 Curve(DDS) 387.788 | | Window Solar Gain | | | Deltas for Average Window Orien
1-Pane .00
2-Pane .66
3-Pane 1.23 | tations (MBtu) 1-Pane .00 2-Pane55 3-Pane99 | | Heating -38.150 -52.110 -80 | f) Beta Intercept
outh West
.784 -53.708 .015144042401
.137 21.225 .188206 .962447 | Memphis TN One Story Prototype Mass and Window runs | | Cooling Load | Heating Load | |-----------------------|---|---| | | Delta Component
(MBtu) (KBtu) | Delta Component
(MBtu) (KBtu) | | | 95 lb Mass Wall R-009 4.08 R-5 -3.23 1.28 R-10 -4.34 .30 R-15 -4.8516 R-30 -5.4569 Intercept774 Slope(DD) 828.20 Curve(DDS) -10.110 | 95 lb Mass Wall R-0 3.86 17.91 R-5 -8.04 7.32 R-10 -12.25 3.57 R-15 -14.05 1.97 R-30 -16.20 .06 Intercept331 Slope(DD) 2977.06 Curve(DDS) -21.581 | | | 120 lb Mass Wall R-028 3.91 R-5 -3.41 1.12 R-10 -4.53 .13 R-15 -5.0029 R-30 -5.6688 Intercept953 Slope(DD) 841.06 Curve(DDS) -11.748 | 120 lb Mass Wall R-0 3.57 17.65 R-5 -8.22 7.16 R-10 -12.37 3.47 R-15 -14.16 1.87 R-30 -16.2902 Intercept383 Slope(DD) 2943.29 Curve(DDS) -20.923 | | • | Log Mass Wall 4in -1.56 2.77 6in -2.94 1.54 8in -3.60 .95 10in -4.02 .58 12in -4.26 .37 Intercept224 Slope(DD) 649.22 Curve(DDS) 49.485 | Log Mass Wall 4in -4.44 10.52 6in -8.80 6.64 8in -11.11 4.59 10in -12.51 3.34 12in -13.42 2.53 Intercept015 Slope(DD) 2756.54 Curve(DDS) 58.555 | | | ndow Orientations (MBtu)
1-Pane .00
2-Pane79
3-Pane -1.45 | Window Solar Gain Deltas for Average William 1-Pane .00 2-Pane .59 3-Pane 1.10 | | Intercept010883033671 | as (KBtu/sf) Beta
East South West
6.235 -82.958 -42.984 .016487
6.223 44.416 59.557001367 | North
Heating -25.182 -4 | | Heating Load | Cooling Load | |---|---| | Delta Component
(MBtu) (KBtu) | Delta Component
(MBtu) (KBtu) | | 95 b Mass Wall R-024 .91 R-5 -1.21 .05 R-10 -1.4618 R-15 -1.5627 R-30 -1.6333 Intercept279 Slope(DD) 102.20 Curve(DDS) 11.992 | 95 lb Mass Wall R-0 | | 120 lb Mass Wall R-041 .76 R-5 -1.2903 R-10 -1.5223 R-15 -1.6232 R-30 -1.6837 Intercept322 Slope(DD) 98.83 Curve(DDS) 10.303 | 120 lb Mass Wall R-0 .31 4.53 R-5 -4.09 .62 R-10 -5.5467 R-15 -6.18 -1.24 R-30 -6.85 -1.84 Intercept -2.032 Slope(DD) 956.91 Curve(DDS) 6.072 | | Log Mass Wall 4in61 .58 6in -1.13 .12 8in -1.3407 10in -1.4416 12in -1.5021 Intercept209 Slope(DD) 9.74 Curve(DDS) 52.456 | Log Mass Wall 4in -1.59 2.84 6in -3.12 1.48 8in -4.15 .56 10in -4.73 .05 12in -5.1432 Intercept -2.072 Slope(DD) 1585.94 Curve(DDS) -63.607 | | Window Solar Gain Deltas for Average Window Or 1-Pane .00 | · | | 2-Pane .03
3-Pane .05 | 1-Pane .00
2-Pane -1.54
3-Pane -2.85 | | Alphas (KBt
North East
Heating -1.403 -2.048
Cooling 70.903 116.346 | South West -2.577 -1.895 .317152007584 113.599 106.614002752021583 | Minneapolis MN One Story Prototype Mass and Window runs Heating Load Cooling Load Delta Component Delta Component (MBtu) (KBtu) (MBtu) (KBtu) 95 lb Mass Wall 95 lb Mass Wall R-0 9.35 45.37 R-0 -1.58 . 65 R-5 -18.92 20.22 R-5 -3.00 -.61 -.90 R-10 -29.78 10.55 R-15 -34.49 6.36 R-10 -3.33 6.36 1.21 R-15 -3.46 -1.02 R-30 -40.28 R-30 -3.68 -1.22 Intercept -.159 Intercept -1.079 Slope(DD) 8205.13 Slope(DD) 186.76 Curve(DDS) -160.688 Curve(DDS) 13.104 120 lb Mass Wall 120 | b Mass Wall R-0 9.08 45.13 .23 R-0 -2.06 R-5 -19.07 20.08 R-5 -3.25 -.83 R-10 -29.90 10.44 R-15 -34.60 6.26 R-10 -3.56 -1.11 -3.64 -1.18 -3.77 -1.30 R-15 R-30 -40.40 1.10 R-30 Intercept -.258 Intercept -1.137 8205.25 Slope(DD) Slope(DD) 122.47 Curve(DDS) -163.512 Curve(DDS) 14.873 Log Mass Wall Log Mass Wall 4in -11.20 27.09 6in -21.53 17.89 4in -1.07 1.11 .16 6in -2.13 8in -27.16 12.88 8in -2.55-.21 10in -30.69 9.74 10in -2.65 -.30 12in -33.09 7.61 -.33 12 in -2.68 .133 Intercept .605 Intercept 7660.85 Slope(DD) -404.78 Slope(DD) Curve(DDS) -26.648 Curve (DDS) 171.282 Window Solar Gain Deltas for Average Window Orientations (MBtu) .00 | 3-Pane | 2.09 | | _ | -Pane | 86 | | |---------|------------------|-----------------|-------------------|-----------------|---------|-----------| | | | Iphas (KI | • . • | | Beta | Intercept | | Heating | North
-43.733 | East
-81.060 | South
-138.954 | West
-77.440 | .007192 | 144884 | 18.440 17.401 1-Pane 2-Pane 21.050 .00 .113085 -.094345 -.47 1-Pane 2-Pane Cooling 1.12 One Story Prototype Mass and Window runs | Heating Load | Cooling Load | | |--|---|-----------------------| | Delta Component
(MBtu) (KBtu) | Delta Component
(MBtu) (KBtu) | · | | 95 lb Mass Wall R-0 | 95 b Mass Wall R-O -1.03 2.79 R-5 -3.80 .33 R-10 -4.6644 R-15 -5.0175 R-30 -5.53 -1.21 Intercept -1.163 Slope(DD) 594.42 Curve(DDS) 3.847 | | | 120 lb Mass Wall R-0 | 120 lb Mass Wall R-0 -1.47 2.40 R-5 -4.09 .07 R-10 -4.9166 R-15 -5.2697 R-30 -5.74 -1.40 Intercept -1.340 Slope(DD) 572.07 Curve(DDS) 2.744 | | | Log Mass Wall 4in -5.05 12.12 6in -10.01 7.71 8in -12.66 5.35 10in -14.24 3.95 12in -15.27 3.03 Intercept .161 Slope(DD) 3121.00 Curve(DDS) 69.861 | Log Mass Wall 4in -1.58 2.30 6in -3.12 .93 8in -3.87 .26 10in -4.15 .01 12in -4.2608 Intercept047 Slope(DD) 2.74 Curve(DDS) 165.785 | | | Window Solar Gain | | | | Deltas for Average Window Orient
1-Pane .00
2-Pane .58
3-Pane 1.08 | ntations (MBtu) 1-Pane00 2-Pane73 3-Pane -1.33 | | | Heating -27.511 -44.348 -74 | South West
4.397 -42.917 .016194
0.690 47.631 .002913 | Intercept030420032631 | 120 lb Mass Wall 120 lb Mass Wall R-0 7.46 31.21 R-0 -1.35 R-5 -13.00 13.00 R-5 -2.75 R-10 -20.25 6.55 R-15 -23.35 3.79 R-10 -3.17 R-15 -3.33 -.90 R-30 -27.10 -3.58 -1.12 . 45 R-30 Intercept -.268 Intercept Slope(DD) 5158.64 Slope(DD) Curve(DDS) -41.234 Curve(DDS) Log Mass Wall. Log Mass Wall -7.27 18.10 -14.46 11.70 4in 4in -.89 1.27 6in 6in -1.85 .41 8in -18.29 8.30 8in -2.29 .02 10in -20.66 6.19 10 i n -2.47 -.14 12in -22.27 4.75 -2.55 -.21 12in Intercept .226 Intercept -.212 Slope(DD) 4918.52 5.91 Slope(DD) Curve(DDS) 40.226 Curve(DDS) 101.362 .86 -.39 -.76 -1.058 273.81 4.549 Window Solar Gain Deltas for Average Window Orientations (MBtu) 1-Pane .00 1-Pane .00 2-Pane .82 2-Pane -.50 3-Pane 1.52 3-Pane -.91 Alphas (KBtu/sf) Beta Intercept North East South West -60.106 -97.645 -58.638 25.781 24.953 27.258 Heating -38.631 .010480 -.159122 Cooling 16.519 .031140 -.081255 | Oklahoma City OK One Story | Prototype Mass and Window runs | |--|--| | Heating Load | Cooling Load | | Delta Component
(MBtu) (KBtu) | Delta Component
(MBtu) (KBtu) | | 95 lb Mass Wall R-0 | 95 lb Mass Wall R-062 3.24 R-5 -3.55 .63 R-10 -4.5425 R-15 -4.9562 R-30 -5.52 -1.13 Intercept -1.155 Slope(DD) 709.13 Curve(DDS) -3.435 | | 120 lb Mass Wall R-0 | 120 lb Mass Wall R-0 -1.00 2.90 R-5 -3.76 .44 R-10 -4.7645 R-15 -5.1781 R-30 -5.67 -1.26 Intercept -1.304 Slope(DD) 698.12 Curve(DDS) -5.586 | | Log Mass Wall 4in -5.35 12.74 6in -10.60 8.07 8in -13.37 5.61 10in -15.02 4.14 12in -16.11 3.17 Intercept .240 Slope(DD) 3213.17 Curve(DDS) 85.906 | Log Mass Wall 4in -1.56 2.40 6in -2.94 1.17 8in -3.62 .57 10in -3.95 .27 12in -4.22 .03 Intercept444 Slope(DD) 521.34 Curve(DDS) 68.943 | | Window Solar Gain Deltas for Average Window | Orientations (MRt) | | 1-Pane .00
2-Pane .72
3-Pane 1.35 | 1-Pane .00
2-Pane82
3-Pane -1.51 | | Alphas (KI
North East
Heating -31.634 -58.815
Cooling 31.949 56.506 | South West
-96.792 -54.799 .013497 .029556 | Omaha NB
One Story Prototype Mass and Window runs | | Cooling Load | Heating Load | |-----------------------|---|---| | | Delta Component
(MBtu) (KBtu) | Delta Component
(MBtu) (KBtu) | | | 95 lb Mass Wall R-0 -1.23 2.10 R-5 -3.51 .07 R-10 -4.1752 R-15 -4.4375 R-30 -4.79 -1.07 Intercept960 Slope(DD) 406.29 Curve(DDS) 11.368 | 95 lb Mass Wall R-0 8.37 36.14 R-5 -15.06 15.29 R-10 -23.50 7.78 R-15 -27.12 4.56 R-30 -31.50 .66 Intercept220 Slope(DD) 6075.80 Curve(DDS) -63.345 | | | 120 lb Mass Wall R-0 -1.65 1.73 R-5 -3.7615 R-10 -4.3870 R-15 -4.6393 R-30 -5.00 -1.25 Intercept -1.140 Slope(DD) 408.30 Curve(DDS) 7.214 | 120 b Mass Wall R-0 8.05 35.86 R-5 -15.23 15.14 R-10 -23.63 7.66 R-15 -27.23 4.46 R-30 -31.60 .57 Intercept292 Slope(DD) 6056.62 Curve(DDS) -64.871 | | | Log Mass Wall 4in -1.45 1.90 6in -2.82 .69 8in -3.40 .17 10in -3.5900 12in -3.7010 Intercept .197 Slope(DD) -206.17 Curve(DDS) 174.640 | Log Mass Wall 4in -8.65 20.99 6in -16.98 13.58 8in -21.40 9.65 10in -24.12 7.23 12in -25.96 5.59 Intercept .520 Slope(DD) 5572.23 Curve(DDS) 65.034 | | | | Window Solar Gain | | | ndow Orientations (MBtu) 1-Pane .00 2-Pane69 3-Pane -1.27 | Deltas for Average Wi
1-Pane .00
2-Pane 1.02
3-Pane 1.89 | | Intercept149947088089 | as (KBtu/sf) Beta
East South West
3.986 -134.997 -68.479 .008432
0.569 34.311 45.488 .012970 | North
Heating -39.856 -7 | | | | | ``` Philadelphia PA One Story Prototype Mass and Window runs Heating Load Cooling Load Delta Component Delta Component (MBtu) (KBtu) (MBtu) (KBtu) 95 lb Mass Wall 95 lb Mass Wall R-0 7.03 30.37 -1.34 1.33 R-0 -12.83 12.70 R-5 R-5 -3.07 -.21 R-10 -19.89 6.42 R-10 -3.56 -.64 R-15 -22.92 3.72 R-15 R-30 -26.59 -3.75 -.81 . 45 -4.01 -1.04 R-30 Intercept .242 Intercept -.938 Slope(DD) 5050.64 Slope(DD) Curve(DDS) 290.16 Curve(DDS) -44.304 10.408 120 lb Mass Wall 120 lb Mass Wall R-0 6.68 30.06 R-0 -1.77 . 95 R-5 -12.98 12.56 R-5 -3.34 -.45 R-10 -20.00 6.32 R-10 -3.77 -.83 R-15 -23.02 3.63 R-15 -3.95 -.99 R-30 -26.68 . 37 -4.20 -1.21 R-30 Intercept -.316 Intercept -1.086 Slope(DD) 5045.46 Slope(DD) 269.09 Curve(DDS) -48.296 Curve(DDS) 8.696 Log Mass Wall Log Mass Wall -7.22 17.69 -14.35 11.35 4in 4in -1.19 1.47 6in -14.35 6in -2.35 . 43 8in -18.11 8.00 8in -2.82 .02 10in -20.37 12in -21.90 5.99 10 i n -3.01 -.15 4.63 12in -3.05 -.19 Intercept .545 Intercept .092 Slope(DD) 4500.81 Slope(DD) -232.30 Curve (DDS) 95.405 Curve(DDS) 156.381 Window Solar Gain Deltas for Average Window Orientations (MBtu) 1-Pane .00 1-Pane .00 2-Pane .87 2-Pane -.56 3-Pane 3-Pane 1.62 -1.02 Alphas (KBtu/sf) Beta Intercept North East South West -61.961 -113.110 -57.881 Heating -36.379 .009707 -.103012 ``` Cooling 19.086 31.325 29.623 35.812 .013840 -.031879 Phoenix AZ One Story Prototype Mass and Window runs | | y crossype mass and window runs | |--|--| | Heating Load | Cooling Load | | Delta Component
(MBtu) (KBtu) | Delta Component
(MBtu) (KBtu) | | 95 lb Mass Wall R-098 5.29 R-5 -6.05 .77 R-10 -7.5657 R-15 -8.17 -1.11 R-30 -8.67 -1.56 Intercept -1.441 Slope(DD) 775.96 Curve(DDS) 39.528 | 95 b Mass Wall
R-0 .95 11.50
R-5 -7.21 4.24
R-10 -10.14 1.63
R-15 -11.37 .54
R-30 -12.9385
Intercept -1.059
Slope(DD) 2109.48
Curve(DDS) -21.602 | | 120 lb Mass Wall R-0 -1.63 4.71 R-5 -6.32 .53 R-10 -7.7473 R-15 -8.33 -1.26 R-30 -8.80 -1.67 Intercept -1.535 Slope(DD) 751.91 Curve(DDS) 33.296 | 120 lb Mass Wall R-0 .44 11.05 R-5 -7.63 3.86 R-10 -10.41 1.39 R-15 -11.62 .31 R-30 -13.16 -1.06 Intercept -1.180 Slope(DD) 2019.72 Curve(DDS) -15.621 | | Log Mass Wall 4in -3.04 3.45 6in -5.73 1.06 8in -6.76 .14 10in -7.1420 12in -7.3639 Intercept .312 Slope(DD) -500.55 Curve(DDS) 352.432 | Log Mass Wall 4in -3.56 7.49 6in -7.02 4.41 8in -8.75 2.87 10in -9.67 2.05 12in -10.23 1.55 Intercept .433 Slope(DD) 1323.93 Curve(DDS) 173.227 | | Window Solar Gain | | | Deltas for Average Window
1-Pane .00
2-Pane .21
3-Pane .40 | Orientations (MBtu) 1-Pane .00 2-Pane -1.16 3-Pane -2.12 | | Alphas (
North East
Heating -15.022 -24.60
Cooling 34.200 77.67 | 06 -31.009 -20.284 .055144200102 | Pittsburgh PA One Story Prototype Mass and Window runs Heating Load Cooling Load Delta Component Delta Component (MBtu) (KBtu) (MBtu) (KBtu) 95 lb Mass Wall 95 lb Mass Wall R-0 8.02 36.21 R-0 -1.85 .34 -15.53 15.26 R-5 R-5 -.75 -3.07 R-10 -23.98 R-15 -27.61 R-30 -32.06 7.74 R-10 -3.32 -.97 4.51 -3.43 -1.07 R-15 . 55 R-30 -3.55 -1.18 Intercept -.292 Intercept -1.004 Slope(DD) 6111.04 Slope(DD) 102.70 Curve(DDS) -64.523 Curve(DDS) 17.044 120 | b Mass Wall 120 lb Mass Wall 7.60 35.84 R-0 R-0 -2.36 -.12 R-5 -15.74 15.07 -3.30 -.95 R-5 R-10 -24.13 7.60 -3.52 -1.15 R-10 R-15 -27.75 4.38 R-15 -3.62 -1.24R-30 -32.18 . 44 R-30 -3.73 -1.34 Intercept -.382 Intercept -1.172 Slope(DD) 6091.30 Slope(DD) 113.83 Curve(DDS) -67.388 Curve (DDS) 9.801 Log Mass Wall Log Mass Wall 4in -8.79 21.25 6in -17.33 13.65 .92 4 in -1.20 6in -2.26 -.03 8in -21.82 9.66 8in -2.60 -.33 10in -24.56 7.22 10 i n -2.64 -.37 12in -26.39 5.59 12in -2.62 -.35 Intercept .660 Intercept .489 5447.54 Slope(DD) -726.45 Slope(DD) Curve(DDS) 105.273 Curve(DDS) 216.549 Window Solar Gain Deltas for Average Window Orientations (MBtu) 1-Pane 2-Pane 3-Pane West -75.105 24.913 .00 -.48 -.86 Beta .010820 Intercept -.093961 .115445 -.085631 1-Pane 2-Pane 3-Pane Heating Cooling .00 1.62 -47.337 12.013 .87 Alphas (KBtu/sf) -99.780 16.530 North East South -62.301 Portland ME One Story Prototype Mass and Window runs | Heating Load | Cooling Load | |---|--| | Delta Component
(MBtu) (KBtu) | Delta Component
(MBtu) (KBtu) | | 95 lb Mass Wall R-0 10.16 44.13 R-5 -18.44 18.68 R-10 -28.72 9.53 R-15 -33.14 5.60 R-30 -38.54 .79 Intercept268 Slope(DD) 7436.37 Curve(DDS) -79.697 | 95 lb Mass Wall R-0 -1.1903 R-5 -1.8158 R-10 -1.9470 R-15 -1.9873 R-30 -2.0580 Intercept700 Slope(DD) 47.76 Curve(DDS) 9.100 | | 120 lb Mass Wall R-0 9.71 43.73 R-5 -18.65 18.49 R-10 -28.87 9.40 R-15 -33.27 5.48 R-30 -38.66 .69 Intercept357 Slope(DD) 7419.54 Curve(DDS) -83.523 | 120 lb Mass Wall R-0 -1.5031 R-5 -1.9974 R-10 -2.0882 R-15 -2.1084 R-30 -2.1588 Intercept768 Slope(DD) 20.06 Curve(DDS) 8.886 | | Log Mass Wall 4in -10.47 25.77 6in -20.72 16.65 8in -26.15 11.82 10in -29.47 8.86 12in -31.71 6.87 Intercept .741 Slope(DD) 6738.45 Curve(DDS) 97.630 | Log Mass Wall 4in69 .42 6in -1.2912 8in -1.5031 10in -1.5232 12in -1.4930 Intercept .182 Slope(DD) -433.80 Curve(DDS) 126.985 | | Window Solar Gain | | | Deltas for Average Window (1-Pane .00 2-Pane 1.12 3-Pane 2.08 | Orientations (MBtu) 1-Pane .00 2-Pane28 3-Pane49 | | Alphas (KE
North East
Heating -51.808 -83.089
Cooling 4.299 7.052 | Beta Intercept South West -136.151 -82.981 .007923 161722 6.804 7.270 .703054 081469 | | | t syps mass and window | i ulis | |---|--|-------------------------| | Heating Load | Cooling Load | | | Delta Component
(MBtu) (KBtu) | Delta Component
(MBtu) (KBtu) | | | 95 b Mass Wall R-0 4.19 25.96 R-5 -14.10 9.69 R-10 -20.50 3.99 R-15 -23.25 1.54 R-30 -26.43 -1.29 Intercept -1.825 Slope(DD) 4456.82 Curve(DDS) -21.342 | 95 lb Mass Wall R-0 -1.56 .23 R-5 -2.7179 R-10 -2.9399 R-15 -3.02 -1.07 R-30 -3.12 -1.16 Intercept -1.012 Slope(DD) 71.73 Curve(DDS) 18.508 | | | 120 lb Mass Wall R-0 3.38 25.24 R-5 -14.48 9.35 R-10 -20.78 3.74 R-15 -23.49 1.33 R-30 -26.63 -1.46 Intercept -1.970 Slope(DD) 4414.97 Curve(DDS) -26.884 | 120 lb Mass Wall R-0 -2.1025 R-5 -2.98 -1.03 R-10 -3.15 -1.19 R-15 -3.22 -1.25 R-30 -3.29 -1.31 Intercept -1.152 Slope(DD) 52.81 Curve(DDS) 14.409 | | | Log Mass Wall 4in -7.48 15.58 6in -14.77 9.09 8in -18.36 5.89 10in -20.38 4.10 12in -21.68 2.94 Intercept .181 Slope(DD) 3147.35 Curve(DDS) 307.422 Window Solar Gain | Log Mass Wall 4in94 .78 6in -1.9512 8in -2.3346 10in -2.3749 12in -2.3447 Intercept .228 Slope(DD) -647.27 Curve(DDS) 202.218 | , | | | ndow Orientations (MBtu) 1-Pane .00 2-Pane38 3-Pane68 | | | North
Heating -52.468 -93 | Beta (KBtu/sf) Beta East South West 3.714 -98.498 -52.942 .014879 3.129 9.157 4.310 .414196 | Intercept401812 .028915 | One Story Prototype Mass and Window runs | Delta Component Delta Component (MBtu) (KBtu) (MBtu) | | |---|---| | (MDCU) (NDCU) | | | 95 lb Mass Wall 95 lb Mass Wall R-0 4.34 30.12 R-0 -3.19 .39 R-5 -16.35 11.71 R-5 -5.00
-1.22 R-10 -23.62 5.24 R-10 -5.35 -1.53 R-15 -26.75 2.46 R-15 -5.49 -1.66 R-30 -30.4483 R-30 -5.62 -1.77 Intercept -1.336 Intercept -1.454 Slope(DD) 5123.41 Slope(DD) 98.05 Curve(DDS) -32.456 Curve(DDS) 30.753 | | | 120 lb Mass Wall 120 lb Mass Wall R-0 3.31 29.21 R-0 -4.0336 R-5 -16.78 11.33 R-5 -5.38 -1.56 R-10 -23.93 4.97 R-10 -5.65 -1.80 R-15 -27.02 2.22 R-15 -5.74 -1.88 R-30 -30.67 -1.03 R-30 -5.83 -1.96 Intercept -1.515 Intercept -1.616 Slope(DD) 5095.09 Slope(DD) 63.69 Curve(DDS) -43.112 Curve(DDS) 23.985 | | | Log Mass Wall 4in -8.72 18.50 6in -17.30 10.87 8in -21.45 7.17 10in -23.71 5.16 12in -25.14 3.89 12in -4.2051 Intercept 1.291 Intercept 1.291 Slope(DD) 3159.61 Curve(DDS) 441.299 Log Mass Wall 4in -1.99 1.46 6in -3.8015 8in -4.3161 10in -4.3060 12in -25.14 3.89 12in -4.2051 Intercept 1.355 Slope(DD) -1624.27 Curve(DDS) 441.299 Curve(DDS) 424.946 | | | Window Solar Gain Deltas for Average Window Orientations (MBtu) | | | 1-Pane .00 1-Pane .00
2-Pane 1.19 2-Pane60
3-Pane 2.23 3-Pane -1.08 | | | Alphas (KBtu/sf) Beta Interce North East South West Heating -49.219 -111.056 -196.146 -92.120 .009334098980 Cooling 11.224 23.471 20.030 28.667 .096144048575 | • | Salt Lake City U One Story Prototype Mass and Window runs Heating Load Cooling Load Delta Component Delta Component (MBtu) (KBtu) (MBtu) (KBtu) 95 lb Mass Wall 95 lb Mass Wall R-0 6.58 32.85 -15.22 13.45 -2.14 1.57 R-0 R-5 R-5 -4.52 -.54 R-10 -22.98 -5.09 -1.05 -5.30 -1.24 -5.61 -1.51 6.54 R-10 -26.33 R-15 3.56 R-15 R-30 -30.31 .02 R-30 Intercept -.692 Intercept -1.279Slope(DD) 5538.40 Slope(DD) 282.69 Curve(DDS) -47.810 Curve(DDS) 25.363 120 lb Mass Wall 120 lb Mass Wall 6.05 32.38 R-0 R-0 -2.84 .95 R-5 -15.46 13.23 R-5 -4.84 R-10 -23.16 R-15 -26.48 6.38 -5.33 -1.26 R-10 3.43 R-15 -5.54 -1.45 R-30 -30.44 - .10 R-30 -5.80 -1.68 Intercept -.789 Intercept -1.440Slope(DD) 5515.90 Slope(DD) 266.31 Curve(DDS) -52.087 Curve(DDS) 18.512 Log Mass Wall Log Mass Wall -8.51 19.42 4in 1.75 4in -1.946in -16.70 12.13 6in -3.57 .30 8in -20.89 8.40 8in -4.09 -.16 10in -23.35 6.21 10in -4.16 -.22 12in -24.99 4.75 -4.20 12in -.26 Intercept .783 Intercept .925 Slope(DD) 4490.50 -965.28 Slope(DD) Curve(DDS) 207.098 Curve(DDS) 309 166 Window Solar Gain Deltas for Average Window Orientations (MBtu) 1-Pane . 00 1-Pane . 00 2-Pane 1.12 2-Pane -.66 3-Pane 2.09 3-Pane -1.20 Alphas (KBtu/sf) Beta Intercept North East South West -93.332 -163.448 -86.551 37.441 33.198 26.211 .009277 -.126593 .040661 -.030251 Heating Cooling -48.785 One Story Prototype Mass and Window runs San Antonio TX Heating Load Cooling Load Delta Component Delta Component (MBtu) (KBtu) (MBtu) (KBtu) 95 lb Mass Wall 95 lb Mass Wall .64 8.22 -5.89 2.41 R-0 R-0 .37 5.22 R-5 R-5 -3.66 . 54 R-10 -7.99 .37 -.18 R-10 -5.07 R-15 -8.88 -.25 R-15 -5.69 -9.73 -1.01 R-30 R-30 -6.43 -.84 Intercept -1.051 Intercept -.968 Slope(DD) 1269.39 Slope(DD) 1014.17 Curve (DDS) 24.274 Curve(DDS) -8.080 120 lb Mass Wall 120 lb Mass Wall R-0 . 15 7.79 .15 R-5 -6.11 2.22 R-5 -3.84 1.47 -8.16 R-10 . 39 R-10 -5.25 . 21 R-15 -9.02 -.37 -5.85 R-15 -.32 R-30 -9.85 -1.11 R-30 -6.60 -.99 Intercept -1.142 Intercept -1.114 Slope(DD) 1249.19 Slope(DD) 1011.53 Curve (DDS) 20.267 Curve(DDS) -8.695 Log Mass Wall Log Mass Wall -3.04 4.95 4in 4in -1.66 3.41 6in -5.88 2.42 6in -3.23 2.01 -7.16 8in 1.28 8in -4.07 1.26 . 70 10in -7.81 10in -4.59 . 80 12in -8.21 . 35 12in -4.87 .55 Intercept -.082 Intercept -.370 Slope(DD) 576.91 Slope(DD) Curve(DDS) 946.90 Curve(DDS) 213.053 28.979 Window Solar Gain Deltas for Average Window Orientations (MBtu) .00 1-Pane 1-Pane .00 2-Pane -1.04 . 27 2-Pane 3-Pane West -26.230 South -36.192 62.273 -1.92 78.952 -.000548 Beta .043338 Intercept -.124841 -.034356 3-Pane Heating Cooling .51 North -18.517 42.401 Alphas (KBtu/sf) East -29.415 San Diego CA One Story Prototype Mass and Windo | 3 the 5to | ry Prototype Mass and Window runs | |---|---| | Heating Load | Cooling Load | | Delta Component
(MBtu) (KBtu) | Delta Component
(MBtu) (KBtu) | | 95 Mass Wall R-0 | 95 lb Mass Wall R-0 -1.28 .05 R-5 -1.8243 R-10 -1.9352 R-15 -2.0260 R-30 -2.0866 | | 120 lb Mass Wall R-0 -1.18 5.32 R-5 -6.56 .53 R-10 -8.31 -1.03 R-15 -8.94 -1.59 R-30 -9.41 -2.00 Intercept -1.964 Slope(DD) 852.56 Curve(DDS) 40.430 | 120 lb Mass Wall R-0 -1.6023 R-5 -1.9756 R-10 -2.1269 R-15 -2.1572 R-30 -2.1774 Intercept649 Slope(DD) 57.52 Curve(DDS) 3.178 | | Log Mass Wall 4in -3.13 3.58 6in -5.95 1.07 8in -7.09 .06 10in -7.5636 12in -7.8562 Intercept296 Slope(DD) -180.10 Curve(DDS) 319.782 Window Solar Gain | Log Mass Wall 4in65 .61 6in -1.25 .08 8in -1.4207 10in -1.4510 12in -1.4913 Intercept .264 Slope(DD) -320.68 Curve(DDS) 107.334 | | Deltas for Average Window
1-Pane .00
2-Pane .34
3-Pane .65 | Orientations (MBtu) 1-Pane .00 2-Pane35 3-Pane62 | | Alphas (K
North East
Heating -31.951 -41.345
Cooling 4.927 8.470 | South West -55.026 -42.541 .034901359778 | | | | San Francisco CA One Story Prototype Mass and Window runs Heating Load Cooling Load Delta Component Delta Component (MBtu) (KBtu) (MBtu) (KBtu) 95 lb Mass Wall 95 lb Mass Wall R-0 3.58 19.61 R-0 -.38 -.06 R-5 -10.27 7.28 R-5 -.44 -.12 R-10 -15.06 R-15 -17.11 -.45 -.46 -.47 3.02 R-10 -.13 1.20 R-15 -.14 R-30 -19.36 -.81 R-30 -.14 Intercept -1.198 Intercept -.116 Slope(DD) 3233.18 Slope(DD) 9.41 Curve (DDS) -1.795 Curve(DDS) .366 120 lb Mass Wall 120 lb Mass Wall R-0 3.05 19.14 R-0 -.43 -.11 R-5 -10.50 7.08 2.88 R-5 -.47 -.14 R-10 -15.22 2.88 R-15 -17.24 1.08 R-30 -19.48 -.91 R-10 -.47 -.14 R-15 - .47 R-30 - .48 -.14 -.15 Intercept -1.283 Intercept -.116 Slope(DD) 3212.62 Slope(DD) .11 Curve(DDS) -6.596 Curve(DDS) .799 Log Mass Wall Log Mass Wall -5.45 11.57 4in -.22 .08 4in 6in -10.85 6.77 6in -.37 -.06 8in -13.51 4.40 8in -.39 -.07 10in -14.98 3.09 10in -.38 -.06 12in -15.91 2.26 -.37 -.06 12 i n Intercept Intercept .352 .163 2208.35 Slope(DD) Slope(DD) -183.45Curve(DDS) 246.595 Curve(DDS) 41.565 Window Solar Gain 1-Pane 2-Pane 3-Pane North East South West -65.635 -107.513 -165.029 -125.357 .010747 -.197964 .524 1.226 1.478 1.066 7.235912 -.021202 .00 -.07 -.12 Beta Intercept Deltas for Average Window Orientations (MBtu) Alphas (KBtu/sf) 1-Pane .00 1.09 2.07 2-Pane 3-Pane Heating Cooling Seattle WA One Story Prototype Mass and Window runs | | The and arridow runs | |---|--| | Heating Load | C1: | | - | Cooling Load | | Delta Component | D . 1 | | (MBtu) (KBtu) | Delta Component | | (11000) | (MBtu) (KBtu) | | 95 1h Mana W 11 | , (1204) | | 95 lb Mass Wall | 95 lb Mass Wall | | 7.41 33.44 | | | R-0 7.41 33.44
R-5 -14.56 13.89 | R-06203 | | R-10 -22.37 6.94 | R-59230 | | R-10 -22.37 6.94
R-15 -25.72 3.95 | R-109734 | | R-30 -29.79 .33 | K-15 - 99 - 36 | | Intercent | R-30 -1.0239 | | Intercept416
Slope(DD) 5591.63
Curve(DDS) -49.490 | Intercept - 332 | | 510pe(DD) 5591.63 | Slope(DD) 14.73 | | Curve(DDS) -49.490 | Curve (DDS) F 1FF | | | Curve(DDS) 5.155 | | 120 lb Mass Wall | 100 11 14 | | R-0 6 06 20 04 | 120 lb Mass Wall | | K-5 -1/1 77 10 76 | R-07918 | | R-10 -22 F2 C 00 | P_5 1 00 0m | | D 15 05 00 0 00 | R-10 -1.04 - 41 | | N=15 =25.86 3.83 | R-15 -1.05 - 41 | | R-10 -22.52 6.80
R-15 -25.86 3.83
R-30 -29.91 .23 | R-10 -1.0037
R-10 -1.0441
R-15 -1.0541
R-30 -1.0844 | | intercept509 | Intercept384 | | Intercept509
Slope(DD) 5576.08
Curve(DDS) -53.410 | Slope (DD) 15 00 | | Curve(DDS) -53,410 | Slope(DD) 15.22
Curve(DDS) 3.123 | | , | curve(DDS) 3.123 | | Log Mass Wall | | | 4in -8.08 19.65 | Log Mass Wall | | 6in -16.09 12.52 | 4in33 .23 | | 9:n 00.04 0.00 | 6in6405 | | 8in -20.24 8.83
10in -22.73 6.62 | 8in72 - 12 | | 10in -22.73 6.62 | 10in7515 | | 12in -24.39 5.14 | 12in7313 | | Intercept .886 | Intercept .114 | | Intercept .886
Slope(DD) 4749.60 | Slope(DD) -218.74 | | Curve(DDS) 150.610 | Curue (DDC) - C2 - C40 | | , | Curve(DDS) 63.649 | | Window Solar Gain | | | was do full daffi | | | Deltas for Avenue Will or | | | Deltas for Average Window Orient: | ations (MBtu) | | 1-1 alle .00 | 1-Pane .00 | | 2-Pane .98 | 2-Pane 16 | | 3-Pane 1.84 | 3-Pane 29 | | | • • • | | Alphas (KBtu/sf) | Beta Intercept | | North East Soi | | | Heating -60.738 -86.417 -121.8 | 200 | | Cooling 1.811 3.350 4.1 | 20 5 555 | | 3 =:=== 0.000 4,1 | .33 5.809 1.163168036479 | | | | Washington DC One Story Prototype Mass and Window runs Heating Load Cooling Load | Delta Component
(MBtu) (KBtu) | Delta Component
(MBtu) (KBtu) | |---|--| | 95 lb Mass Wall R-0 5.95 26.30 R-5 -11.18 11.06 R-10 -17.31 5.60 R-15 -19.94 3.26 R-30 -23.16 .40 Intercept215 Slope(DD) 4419.77 Curve(DDS) -44.458 | 95 lb Mass Wall R-0 -1.19 2.08 R-5 -3.42 .09 R-10 -4.1051 R-15 -4.3977 R-30 -4.76 -1.10 Intercept -1.031 Slope(DD) 450.20 Curve(DDS) 6.021 | | 120 lb Mass Wall R-0 | 120 lb Mass Wall R-0 -1.58 1.73 R-5 -3.6208 R-10 -4.2867 R-15 -4.5591 R-30 -4.89 -1.21 Intercept -1.143 Slope(DD) 435.47 Curve(DDS) 3.435 | | Log Mass Wall 4in -6.39 15.32 6in -12.55 9.84 8in -15.77 6.97 10in -17.75 5.21 12in -19.10 4.01 Intercept .417 Slope(DD) 3974.20 Curve(DDS) 68.002 | Log Mass Wall 4in -1.40 1.89 6in -2.78 .66 8in -3.32 .18 10in -3.5502 12in -3.6410 Intercept .185 Slope(DD) -207.12 Curve(DDS) 174.249 | Window Solar Gain
Deltas for Average Window Orientations (MBtu) 1-Pane .00 2-Pane .77 2-Pane -.72 3-Pane 1.44 Alphas (KBtu/sf) th East Sout Beta Intercept North South West -56.477 -97.795 -54.820 -34.732 .011459 .013901 Heating Cooling 26.241 40.473 39.431 47.690 .008840 -.037545 ## **REFERENCES** - American Society of Heating, Refrigerating, and Air-Conditioning Engineers 1985. ASHRAE Handbook, 1985 Fundamentals. American Society of Heating, Refrigerating, and Air-Conditioning Engineers, Atlanta GA. - Bull, J., Davis, P., Cumali, Z., Nozaki, S., Sullivan, R., Meixel, G., and Shen, L. 1981. "Earth contact subroutine development." Task 7, DOE Contract No. DE-AC03-80SF11508. Consultants Computation Bureau, Oakland CA. - Crow, L.W. 1980. "Development of hourly data for weather year for energy calculations (WYEC), including solar data, at 21 stations throughout the United States." ASHRAE RP 239, American Society of Heating, Refrigeration, and Air-conditioning Engineers. - Ceylan, T. H. and Myers, G. E. 1979. "Long-time Solutions to Heat-Conduction Transients with Time-Dependent Inputs." *Journal of Heat Transfer* 102, pp. 111-116. - Energy Analysis Program, Applied Science Division. 1987. "User's Manual for PEAR 2.0, Program for Energy Analysis of Residences." Lawrence Berkeley Laboratory, Berkeley CA. - Huang, Y.J., Ritschard, R. et al. 1987. "Methodology and Assumptions for Evaluating Heating and Cooling Energy Requirements in New Single-family Residential Buildings (Technical Support Document for the PEAR Microcomputer Program)." Lawrence Berkeley Laboratory Report LBL-19128, Berkeley CA. - Huang, Y.J., Ritschard, R.L., and Bull, J.C. 1985. "Simplified Calculations of Energy use in Residences Using A Large DOE-2 Data Base." Lawrence Berkeley Laboratory Report LBL-20107, Berkeley CA. - Johnson, R., Sullivan, R., Nozaki, S., Selkowitz, S., Conner, C., and Arasteh, D. 1983. "Building envelope thermal and daylighting analysis in support of recommendations to upgrade ASHRAE/IES Standard 90 final report.", Lawrence Berkeley Laboratory Report LBL-16770, Berkeley CA. - Labs, K. 1981. "Regional Analysis of Ground Above-ground Climate." ORNL Report Sub-81/40451/1, Oak Ridge National Laboratory. - Lawrence Berkeley Laboratory and Los Alamos Scientific Laboratory. 1980. "DOE-2.1B Reference Manual, Parts 1 and 2." Berkeley CA. - Shen, L.S. Poliakova, J., and Huang, Y.J. 1987. "A Quasi-analytical Normalization Procedure for Building Foundation Heat Loss Calculations." Underground Space Center, University of Minnesota. - Sherman, M.H. and Grimsrud, D.T. 1980. "Infiltration-pressurization Correlation: Simplified Physical Modeling." Lawrence Berkeley Laboratory Report LBL-10163, Berkeley CA. - Sullivan, R. and Selkowitz, S. 1985. "Residential Window Performance Analysis using Regression Procedures." Lawrence Berkeley Laboratory Report LBL-19245, Berkeley CA. - Turiel, I., Ritschard, R., Wilson, D., and Albrand, P. 1985. "Low Rise Multi-family Housing: Prototype Development and Preliminary Energy Analysis." Lawrence Berkeley Laboratory Report LBL-18823 Berkeley CA. - Underground Space Center, University of Minnesota. 1983. "Earth Contact Systems Final Report." U.S. Department of Energy Passive Solar Program, Contract No. DE-AC03-80SF11508. - Window and Daylighting Group, Applied Science Division. 1986. a Computer Program for Calculating U-values and Shading Coefficients of Windows." Lawrence Berkeley Laboratory, Berkeley CA. ## APPENDIX A. MASTER DOE-2.1C INPUT FILE Because of the need to make and catalogue the large number of DOE-2 simulations, an automated input/output procedure has been developed. A single master input file was created and used for the entire data base. The input file is processed by an utility program and reduced to a DOE-2 readable input file with the selected parametric inputs and necessary foundation flux data. ## POST-PROCESSOR PARTIAL ``` *(*)*(*)*(*)*(*)*(*) (*)*(*)*(*)*(*)*(*)* Internal loads as in PNL data base runs (January 1987) INPUT LOADS LOADS .. LINE-1 *PROTOTYPE FOUNDATION OPTION AND CODE * LINE-2 *LOCATION WEATHER TAPE WALL EQUIPMENT * *Dummy TITLE *Dummy *Dummy LINE-3 * *Dummy LINE-4 * *Dummy LINE-5 * PARAMETER $ $ $ IWALLAREA = area of interior walls $ $ -- prototype parameters -- $ FLOORAREA=1540 PERIM=166 IWALLAREA=1088 $ BSMTAREA=1540 $ ROOFZ=8.0 ROOFHT=14.757 ROOFWD=27.5 $One Story $One Story $One Story $One Story $ WALLWD=41.5 WALLHT=8.0 WINDOWWD=11.55 $ WALLX=61.5 SHADEX=81.5 $One Story $One Story $ INTLOAD=56857 LATLOAD=.2138 $Two Story $ FLOORAREA=2240 PERIM=136 IWALLAREA=1560 $Two Story $ BSMTAREA=1120 $Two Story $ ROOFZ=16.0 ROOFHT=14.757 ROOFWD=20.0 $ WALLWD=34.0 WALLHT=16.0 WINDOWWD=8.4 STwo Story $Two Story $ WALLX=54.0 SHADEX=74.0 $ INTLOAD=62724 LATLOAD=.1938 $Two Story $Split Level $ FLOORAREA=1904 PERIM=84 IWALLAREA=1328 $ UPERIM=68 UPFNDAREA=560 $ BSMTAREA=784 $Split Level $Split Level $Split Level $ ROOFZ=8.0 ROOFHT=14.0 ROOFWD=14.757 $ WALLWD=21.0 WALLHT=8.0 WINDOWWD=5.712 $ WALLX=59.17 SHADEX=79.17 $Split Level $Split Level $Split Level $ INTLOAD=59900 LATLOAD=.2029 $Townhouse $ FLOORAREA=1200 IWALLAREA=976 BSMTAREA=600 $ ROOFZ=16.0 ROOFHT=15.811 ROOFWD=10.0 $Townhouse $Townhouse $ WALLHT=16.0 WINDOWWD=4.5 $Townhouse $ WALLX=45.0 SHADEX=65.0 $ INTLOAD=53972 LATLOAD=.2252 $Townhouse $Mid Town $End Town $ PERIM=40 WALLWD=10.0 $ PERIM=70 WALLWD=17.5 $Apartment $ FLOORAREA=1200 IWALLAREA=976 BSMTAREA=1200 ``` ``` $Apartment $ ROOFZ=16.0 ROOFHT=21.082 ROOFWD=15.0 $Apartment WALLHT=8.0 WINDOWWD=9.0 $Apartment $ WALLX=45.0 SHADEX=65.0 $Apartment $ INTLOAD=53972 LATLOAD=.2252 $MApartment $ PERIM=60 WALLWD=15.0 $EApartment $ PERIM=100 WALLWD=25.0 * ---- Location parameters *Dummy Fdn Layers dependent on soil type for location --- Conservation parameters --- $High Infiltration $ INFILT = .0007 $ INFILT = .0005 $Medium Infiltration $Low Infiltration $INFILT = .0003 $1-pane Windows $ UWINDOW = 1.35 $2-pane Windows UWINDOW = .535 UWINDOW = .327 UWINDOW = .1 $3-pane Windows $M-pane Windows $1. Shading Coefficient $ GLSCOEF=1.0 $.7 Shading Coefficient $ GLSCOEF=0.7 $.4 Shading Coefficient $ GLSCOEF=0.4 $R00 Ceiling $ ROOFL = r0roof $R11 Ceiling $ ROOFL = rllroof $R19 Ceiling ROOFL = r19roof $R22 Ceiling $ ROOFL = r22roof $R30 Ceiling $ ROOFL = r30roof $R38 Ceiling ROOFL = r38roof $R49 Ceiling $R60 Ceiling $ ROOFL = r49roof $ ROOFL = r60roof $ WALLL = r0rwall $R00 Reg siding wall $R11 Reg siding wall $ WALLL = rllrwall $R19 Reg siding wall $R27 Reg siding wall $ WALLL = r19rwall $ WALLL = r27rwall $ WALLL = r34rwall $R34 Reg siding wall $R00 Stucco wall $ WALLL = r0swall $R11 Stucco wall $ WALLL = rllswall $R19 Stucco wall $R27 Stucco wall $ WALLL = r19swall $ WALLL = r27swall $R34 Stucco wall $ WALLL = r34swall *Dummy Main Fdn U-effective from file proto.fdn *Dummy Upper UFd U-effective from file proto.fdn $FMO Bsmt $ FLRL=r0flr B1WALLHT=8 B2WALLHT=0.00001 SFM1 Bsmt $ FLRL=r0flr B1WALLHT=4 B2WALLHT=4 B2WALLHT=4 $FM2 Bsmt $ FLRL=r0flr B1WALLHT=4 $ FLRL=r0flr B1WALLHT=0.00001 B2WALLHT=8 $ FLRL=r0flr B1WALLHT=0.00001 B2WALLHT=8 $FM3 Bsmt $FM4 Bsmt $ FLRL=r0flr BlWALLHT=0.00001 B2WALLHT=8 $ FLRL=r11flr BlWALLHT=8 B2WALLHT=0.00001 $ FLRL=r30flr BlWALLHT=8 B2WALLHT=0.00001 $FM5 Bsmt $FM6 Bsmt $FMO Crawl $ FLRL=r0flr $FM1 Crawl $ FLRL=r11flr $FM2 Crawl $FM3 Crawl $ FLRL=r19flr $ FLRL=r30flr ``` ``` $FM4 Crawl $ FLRL=r38flr $FM5 Crawl $ FLRL=-999 end of parameters - RUN-PERIOD JAN 1 1986 THRU DEC 31 1986 DIAGNOSTIC CAUTIONS, WIDE, ECHO, SINGLE-SPACED .. *Dummy BUILDING-LOCATION LAT=L1, LON=L2,T-Z=L3, ALT=L4, WS-HEIGHT-LIST=(12 MONTH TOWER HEIGHTS) *Dummy AZIMUTH=0 SHIELDING-COEF=0.19 TERRAIN-PAR1=.85 TERRAIN-PAR2=.20 WS-TERRAIN-PAR1=.85 WS-TERRAIN-PAR2=.20 FUNCTION =(*SHADING*,*NONE*) WARNINGS LOADS-REPORT SUMMARY=(LS-E) .. Loads Schedules ---- DAYINTSCH DAY-SCHEDULE $CEC internal loads profile $ The following shading schedule is modified by function SHADING $ to give .63 during the cooling season defined as periods with $ more than 5 cooling degree days for the four previous days. SCHEDULE THRU DEC 31 (ALL) (1,24) (0.80) .. SHADCO $---- Constructions ----- WINDOWGT GLASS-TYPE $ Windows SHADING-COEF-GLSCOEF GLASS-CONDUCTANCE-UWINDOW .. WALLCON CONSTRUCTION $ Wall section LAYERS=WALLL ROOFCON CONSTRUCTION $ Roof section, with joist LAYERS=ROOFL . IWALLCON CONSTRUCTION $ Interior walls LAYERS=iwall1 DOORCON CONSTRUCTION $ Solid door U-VALUE=.7181 FSLABCON CONSTRUCTION $ Floor slab in contact with soil $Split $ LAYERS=FSLABL .. ``` ``` $Two St$ IFLRCON CONSTRUCTION $ Floor over conditioned space $Two St$ LAYERS=iflrl $Split $ IFLRCON CONSTRUCTION $ Floor over conditioned space $Split $ LAYERS=iflrl $ Floor over conditioned space $Townho$ IFLRCON CONSTRUCTION $Townho$ LAYERS=iflrl .. CONSTRUCTION $ Floor over conditioned space $Apart $ IFLRCON $Apart $ LAYERS=iflrl .. $Bsmt constructions $Bsmt $ FLRCON CONSTRUCTION $ Floor over unconditioned space $Bsmt LAYERS=FLRL $ BWALLICON CONSTRUCTION $ Uninsulated Basement wall $Bsmt $Bsmt LAYERS=ROBWALL .. $ BWALL2CON CONSTRUCTION $ Insulated Basement wall $Bsmt $FMO Bsmt $ LAYERS=ROBWALL $FM1 Bsmt $ $FM2 Bsmt $ LAYERS=R5BWALL LAYERS=R10BWALL .. $FM3 Bsmt $ LAYERS=R5BWALL $FM4 Bsmt $ $FM5 Bsmt $ LAYERS=R10BWALL ... LAYERS=ROBWALL $FM6 Bsmt $ LAYERS=ROBWALL $Crawl space constructions $Crawl $ FLRCON CONSTRUCTION $ Floor over unconditioned space $Crawl $Crawl $ LAYERS=FLRL .. $Regcrawl $ CWALLCON CONSTRUCTION $ Uninsul. siding crawlspace walls LAYERS=r0rcwall $Stucrawl $ CWALLCON CONSTRUCTION $ Uninsul. stucco crawlspace walls $Stucrawl $ LAYERS=r0scwall .. $SpltSlab $ BWALL2CON CONSTRUCTION $ Interior fdnwall in Split-level $SpltSlab $ LAYERS=r0fcwall $SpltBsmt $ UWALLCON CONSTRUCTION $ Wall bet Room & Bsmt in Splitlevel $SpltBsmt $ LAYERS=uwall1 .. $SpltCrawl$ UWALLCON CONSTRUCTION $Wall bet Room & Crawl in Splitlevel LAYERS=uwall1 ... $---- Shades ----- SURROUNDN BUILDING-SHADE $ Effect of neighboring houses north HEIGHT=10 WIDTH=SHADEX X=0 Y=SHADEX AZIMUTH=180
TRANSMITTANCE=0.50 TILT=90 ... SURROUNDS BUILDING-SHADE $ Effect of neighboring houses south LIKE SURROUNDN X=SHADEX Y=0 AZIMUTH=0 ... SURROUNDE BUILDING-SHADE $ Effect of neighboring houses east LIKE SURROUNDN X=SHADEX Y=SHADEX AZIMUTH=270 .. SURROUNDW BUILDING-SHADE $ Effect of neighboring houses west LIKE SURROUNDN X=0 Y=0 AZIMUTH=90 .. $Apartment $ LANDINGN BUILDING-SHADE $ 4ft 2nd story landing north HEIGHT=4 WIDTH=WALLX $Apartment $ X=20 Y=WALLX Z=8.0 AZIMUTH=180 $Apartment $ TILT=0 $Apartment $ LANDINGS BUILDING-SHADE $ 4ft 2nd story landing south $Apartment $ LIKE LANDINGN X=WALLX Y=20 AZIMUTH=0 ... ``` ``` $Apartment $ LANDINGE BUILDING-SHADE $ 4ft 2nd story landing east $Apartment $ LIKE LANDINGN X=WALLX Y=WALLX AZIMUTH=270 .. $Apartment $ LANDINGW BUILDING-SHADE $ 4ft 2nd story landing west LIKE SURROUNDN X=20 Y=20 AZIMUTH=90 .. Space -- Sensible internal loads are assumed at 4692kWh/year plus 0.9kWh/sqft for lighting. Latent loads assumed 1300kWh/year ROOMCOND SPACE-CONDITIONS TEMPERATURE = (74) SOURCE-TYPE-PROCESS SOURCE-SCHEDULE=INTLDSCH SOURCE-BTU/HR=INTLOAD SOURCE-SENSIBLE=1. SOURCE-LATENT=LATLOAD INF-METHOD=S-G FRAC-LEAK-AREA = INFILT FLOOR-WEIGHT=0 FURNITURE-TYPE-LIGHT FURN-FRACTION=0.29 FURN-WEIGHT=3.30 $Ach report$ FUNCTION=(*NONE*,*INFILTRATION*) THEROOM SPACE SPACE-CONDITIONS-ROOMCOND AREA=FLOORAREA VOLUME=FLOORAREA TIMES 8. .. * Walls INTWALL INTERIOR-WALL INT-WALL-TYPE=INTERNAL AREA-IWALLAREA CONSTRUCTION-IWALLCON ... NWALL EXTERIOR-WALL WIDTH=WALLWD CONSTRUCTION=WALLCON X-WALLX Y-WALLX HEIGHT-WALLHT NDOOR DOOR HEIGHT=6.5 WIDTH=.75 CONSTRUCTION=DOORCON X=3.0 .. NWIND1 GLASS-TYPE=WINDOWGT X=5.0 Y=3 WINDOW HEIGHT=4.0 WIDTH=WINDOWWD SHADING-SCHEDULE=SHADCO $Split $ OH-A=5.0 OH-B=1.0 OH-W=WALLWD OH-D=2.0 OH-A=5.0 OH-B=1.0 OH-W=WALLWD OH-D=2.0 $One St$ $Two St$ WINDOW LIKE NWIND1 Y=11.0 NWIND2 OH-A=5.0 OH-B=1.0 OH-W=WALLWD OH-D=2.0 .. $Two St$ $Townhos NWIND2 WINDOW LIKE NWIND1 Y=11.0 OH-A=15.0 OH-B=1.0 OH-W=WALLWD TIMES 3 OH-D=2.0 .. OH-A=5.0 OH-B=1.0 OH-W=WALLWD TIMES 2 OH-D=2.0 .. VALL LIKE NWALL X=20 Y=20 AZIMUTH=180 .. $Mid Tos $End To$ SWALL EXTERIOR-WALL SDOOR DOOR LIKE NDOOR LIKE NWIND1 SWIND1 WINDOW $Two St$ WINDOW LIKE NWIND2 Y=11.0 .. SWIND2 $Townho$ SWIND2 WINDOW LIKE NWIND2 Y=11.0 EWALL EXTERIOR-WALL LIKE NWALL X=WALLX Y=20 AZIMUTH=90 .. EDOOR DOOR LIKE NDOOR EWIND1 WINDOW LIKE NWIND1 $Two St$ EWIND2 WINDOW LIKE NWIND2 Y=11.0 ... ``` ``` $Townho$ EWIND2 WINDOW LIKE NWIND2 Y=11.0 WWALL EXTERIOR-WALL LIKE NWALL X=20 Y=WALLX AZIMUTH=270 .. WDOOR DOOR LIKE NDOOR WWIND1 WINDOW LIKE NWIND1 $Two St$ WINDOW LIKE NWIND2 Y=11.0 .. WINDOW LIKE NWIND2 Y=11.0 .. WWIND2 $Townho$ WWIND2 * Floors FOUNDATION UNDERGROUND-FLOOR $ Slab floor HEIGHT=10 WIDTH=BSMTAREA TIMES $Slab $Slab $Slab TILT=180 CONSTRUCTION=FSLABCON $Slab U-EFFECTIVE=FDNUEFF FUNCTION =(*NONE*,*FNDQ*) INTERIOR-WALL $ Floor bet Theroom and Basement $Slab $Bsmt INTERFLR $Bsmt TILT=180 CONSTRUCTION=FLRCON $Bsmt AREA=BSMTAREA NEXT-TO=BASEMENT $Crawl $ INTERFLR INTERIOR-WALL $ Floor bet Theroom and Crawlspace $Crawl $ $Crawl $ TILT-180 CONSTRUCTION-FLRCON AREA-BSMTAREA NEXT-TO-CRAWLSPACE $Two St$ INTERIOR-WALL INT-WALL-TYPE=INTERNAL AREA=BSMTAREA CONSTRUCTION=IFLRCON TILT=180 ... INTFLOOR $Two St$ $Split $ INTERIOR-WALL INT-WALL-TYPE=INTERNAL INTFLOOR $Split $ AREA-UPFNDAREA CONSTRUCTION-IFLRCON TILT-180 .. $Townho$ INTFLOOR INTERIOR-WALL INT-WALL-TYPE=INTERNAL $Townho$ AREA-BSMTAREA CONSTRUCTION-IFLRCON TILT-180 ... * Split level walls and floors $Split $ EXTERIOR-WALL LIKE NWALL X=38.17 WIDTH=18.17 NWALL2 $Split $ Z=-3 HEIGHT=16 ... WINDOW GLASS-TYPE=WINDOWGT X=5.0 Y=3.0 $Split $ NWIND2 $Split $ SHADING-SCHEDULE=SHADCO HEIGHT=4 WIDTH=4.284 .. $Split $ NWIND3 WINDOW LIKE NWIND1 Y=11 WIDTH=4.284 OH-W=18.17 EXTERIOR-WALL LIKE SWALL X=41 WIDTH=18.17 $Split $ SWALL2 $Split $ Z=-3 HEIGHT=16 $Split $ WINDOW LIKE NWIND2 SWIND2 $Split $ SWIND3 WINDOW LIKE NWIND3 $Split $ EXTERIOR-WALL LIKE EWALL Y=41 WIDTH=18.17 EWALL2 $Split $ Z=-3 HEIGHT=16 $Split $ EWIND2 WINDOW LIKE NWIND2 WINDOW LIKE NWIND3 ... $Split $ EWIND3 $Split $ WWALL2 EXTERIOR-WALL LIKE WWALL Y=38.17 WIDTH=18.17 Z=-3 HEIGHT=10 .. WINDOW LIKE NWIND2 .. WINDOW LIKE NWIND3 .. WINDOW LIKE NWIND3 .. **STREET** TIMES .1 $Split $ $Split $ WWIND2 $Split $ WWIND3 $Split $ UPPERFND $Split $ $Split $ TILT=180 CONSTRUCTION=SLABCON $Split $ U-EFFECTIVE=UPFUEFF $Split $ FUNCTION =(*NONE*,*UPFNDQ*) ... UNDERGROUND-WALL $ Vertical concrete wall $SpltSlab $ MIDFND $SpltSlab $ HEIGHT=3.0 WIDTH=28 $SpltSlab $ U-EFFECTIVE=FDNUEFF $SpltSlab $ CONSTRUCTION-BWALL2CON L2CON .. $ Vertical wall next to basement $SpltBsmt $ MIDFND INTERIOR-WALL $SpltBsmt $ HEIGHT=3.0 WIDTH=28 NEXT-TO=BASEMENT $SpltBsmt $ CONSTRUCTION-UWALLCON ... ``` ``` $SpltCrawl$ MIDFND INTERIOR-WALL $ Vertical wall next to crawl HEIGHT=3.0 WIDTH=28 NEXT-TO=CRAWLSPACE $SpltCrawls $SpltCrawl$ CONSTRUCTION=UWALLCON ... * Apartment upper unit space $Apartment $ UPROOM SPACE LIKE THEROOM $Apartment $ FUNCTION=(*NONE*,*NONE*) WALL $Floor bet Theroom and Uproom $Apartment $ APTFLR INTERIOR-WALL $Apartment $ CONSTRUCTION=IFLRCON AREA=BSMTAREA $Apartment $ NEXT-TO=THEROOM TILT=180 $Apartment $ UPINTWALL INTERIOR-WALL LIKE INTWALL $Apartment $ UPNWALL EXTERIOR-WALL LIKE NWALL Z=8.0 .. $Apartment $ UPNDOOR $Apartment $ UPNWIND DOOR LIKE NDOOR ... WINDOW $MApartment$ OH-B=1.0 OH-W=WALLWD TIMES 3 OH-D=2.0 . OH-A=15.0 $EApartment$ OH-A=5.0 OH-B=1.0 OH-W=WALLWD TIMES 2 OH-D=2.0 .. $Apartment $ UPSWALL EXTERIOR-WALL LIKE SWALL Z=8.0 .. $Apartment $ UPSDOOR DOOR LIKE NDOOR $Apartment $ UPSWIND WINDOW LIKE UPNWIND $Apartment $ UPEWALL EXTERIOR-WALL LIKE EWALL Z=8.0 .. $Apartment $ UPEDOOR DOOR LIKE NDOOR $Apartment $ UPEWIND $Apartment $ UPWWALL WINDOW LIKE UPNWIND EXTERIOR-WALL LIKE WWALL Z=8.0 .. $Apartment $ UPWDOOR DOOR LIKE NDOOR $Apartment $ UPWWIND WINDOW LIKE UPNWIND * Roofs - NROOF ROOF X=WALLX Y=WALLX Z=ROOFZ HEIGHT=ROOFHT WIDTH=ROOFWD CONSTRUCTION=ROOFCON TILT=18.435 SROOF LIKE NROOF AZIMUTH=180 X=20 Y=20 LIKE NROOF AZIMUTH=90 X=WALLX Y=20 LIKE NROOF AZIMUTH=270 X=20 Y=WALLX ROOF EROOF ROOF WROOF ROOF * Split level roof $Split $ ROOF LIKE NROOF HEIGHT=14 WIDTH=10.54 Z=13 X=45.17 .. ROOF LIKE SROOF HEIGHT=14 WIDTH=10.54 Z=13 X=34 .. NROOF2 $Split $ SROOF2 ROOF LIKE EROOF HEIGHT=14 WIDTH=10.54 Z=13 Y=34 ... ROOF LIKE WROOF HEIGHT=14 WIDTH=10.54 Z=13 Y=45.17 ... $Split $ EROOF2 $Split $ WROOF2 * Basement $Bsmt BASEMENT SPACE $Bsmt AREA-BSMTAREA VOLUME-BSMTAREA TIMES 8. $Bsmt FURNITURE-TYPE=LIGHT $Bsmt $ FURN-FRACTION=0.29 FURN-WEIGHT=3.30 $Bsmt $Bsmt FLOOR-WEIGHT=0 $Bsmt ZONE-TYPE=UNCONDITIONED T=(70) $Bsmt UNDERGROUND-WALL $ Basement wall w/o insulation FND1WALL $Bsmt $ HEIGHT-B1WALLHT WIDTH-PERIM $Bsmt CONSTRUCTION=BWALL1CON TILT=90 $Bsmt U-EFFECTIVE= FDNUEFF $Bsmt FUNCTION =(*NONE*,*FNDQ*) $Bsmt UNDERGROUND-WALL $ Basement wall with insulation FND2WALL $Bsmt HEIGHT-B2WALLHT WIDTH-PERIM $Bsmt U-EFFECTIVE-FDNUEFF $Bsmt CONSTRUCTION=BWALL2CON TILT=90 FOUNDATION UNDERGROUND-FLOOR $ basement concrete floor $Bsmt $Bsmt HEIGHT=10 WIDTH=BSMTAREA TIMES .1 $Bsmt $ U-EFFECTIVE=FDNUEFF ``` ``` $Bsmt CONSTRUCTION=FSLABCON TILT=180 ... $ $Crawl $ CRAWLSPACE SPACE $Crawl $ AREA=BSMTAREA VOLUME=BSMTAREA TIMES 3.00 $Crawl $ INF-METHOD=S-G assume 1 ft2 of vents per 150 ft2 of crawl space area, effective-leakage-area = 75% of vent area $Crawl $Crawl $Crawl $ FRAC-LEAK-AREA .005 $Crawl $ FLOOR-WEIGHT=0 $Crawl $ ZONE-TYPE=UNCONDITIONED T=(60) $CAch report$ FUNCTION=(*NONE*,*CRAWLINFILT*) $Crawl $ $Crawl $ NCWALL EXTERIOR-WALL LIKE NWALL $Crawl $ CONSTRUCTION=CWALLCON HEIGHT=1.50 Z=-3.00 $Crawl $ SCWALL EXTERIOR-WALL LIKE SWALL $Crawl $ CONSTRUCTION=CWALLCON HEIGHT=1.50 Z=-3.00 $Crawl $ ECWALL EXTERIOR-WALL LIKE EWALL $Crawl $ CONSTRUCTION=CWALLCON HEIGHT=1.50 Z=-3.00 $Crawl $ WCWALL EXTERIOR-WALL LIKE WWALL $Crawl $ CONSTRUCTION=CWALLCON HEIGHT=1.50 Z=-3.00 $Crawl $ FOUNDATION UNDERGROUND-FLOOR $ Crawlspace dirt floor $Crawl $ HEIGHT-10 WIDTH-BSMTAREA TIMES .1 $Crawl $ TILT=180 CONSTRUCTION=FSLABCON $Crawl $ U-EFFECTIVE=FDNUEFF $Crawl $ FUNCTION=(*NONE*,*FNDQ*) END FUNCTION NAME=SHADING LEVEL=BUILDING ASSIGN Y=SCHEDULE-NAME(SHADCO) IHR=IHR IDAY=IDAY IMO=IMO DBT=DBT ASSIGN ASSIGN IPRDFL=IPRDFL ISUNUP=ISUNUP ... CALCULATE IF (IPRDFL .LE. 0) GO TO 2 SC=Y GO TO 70 2 IF (IHR .NE. 1) GO TO 5 CDH=0 HDH=0 IDAYH=0 5 CONTINUE IF (ISUNUP .EQ. 0) GO TO 25 DELTA=DBT-65.0 IF (DELTA .GT. 0.00) GO TO 10 HDH=HDH+ABS(DELTA) GO TO 20 10 CDH=CDH+DELTA 20 CONTINUE IDAYH=IDAYH+1 25 IF (IHR .NE. 24) GO TO 70 CDDD=CDH/IDAYH HDDD=HDH/IDAYH IF (CDDD .LT. 5.00) GO TO 29 IF (SC .NE. 0 80) CO TO 27 IF (SC .NE. 0.80) GO TO 27 ICOUNT=ICOUNT+1 IF (ICOUNT .LE. 4) GO TO 40 27 IHCOUNT=0 ``` ``` SC=0.60 GO TO 70 29 IF (SC .NE. 0.60) GO TO 30 IHCOUNT=IHCOUNT+1 IF (IHCOUNT .GE. 4) GO TO 30 SC=0.60 GO TO 70 30 ICOUNT=0.0 40 SC=0.80 70 CONTINUE Y=SC PRINT 80,Y,IMO,IDAY,IHR,CDDD,CDH,ICOUNT,IHCOUNT 80 FORMAT('SHADING : ADD=',8F10.2) END-FUNCTION $FndQ function $FndQ function FUNCTION NAME - FNDQ $FndQ function LEVEL = UNDERGROUND-WALL $FndQ function ASSIGN $FndQ function ASSIGN DOY=IDOY UGFQ=QUGF UGWQ=QUGW QTABL = TABLE $FndQ flux table for main foundation from Minnesota model data file CALCULATE $FndQ function WEEK = DOY / 3.0 UGWQ = 0.0 $FndO function $FndQ function UGFQ = PWL(QTABL, WEEK) $FndQ function PRINT 10, DOY, WEEK, UGWQ, UGFQ 10 FORMAT('FNDQ', 4F10.2) $FndQ function $FndQ function END-FUNCTION $UFdQ function $UFdQ function FUNCTION NAME = UPFNDQ SUFdQ function LEVEL - UNDERGROUND-WALL $UFdQ function SUFdQ function ASSIGN SUFdQ function ASSIGN DOY=IDOY UPUGFQ=QUGF UPUGWQ=QUGW ... UPQTABL = TABLE SUFdQ flux table for upper foundation from Minnesota model data file SUFdQ function CALCULATE $UFdQ function WEEK = DOY / 3.0 UPUGWQ = 0.0 $UFdQ function $UFdQ function UPUGFQ = PWL(UPQTABL, WEEK) PRINT 10, DOY, WEEK, UPUGWQ, UPUGFQ 10 FORMAT('UPFNDQ', 4F10.2) $UFdQ function $UFdQ function $UFdQ function END-FUNCTION $Ach function $Ach function FUNCTION NAME=INFILTRATION $Ach function
LEVEL-BUILDING function ASSIGN IDOY=IDOY IMO=IMO HR=IHR FLOORAREA=FLOORAREA ... $Ach function ASSIGN IPRDFL=IPRDFL FNTYPE=FNTYPE $Ach INFIL1=CFMINF $Ach function CALCULATE $Ach IF (FNTYPE .NE. 2) GO TO 8 IF (IPRDFL .LE. 0) GO TO 2 function $Ach function $Ach function IMTH=1 $Ach function DL=0 $Ach function TOTAL=0 $Ach function 2 IF ((IDOY .EQ. 365) .AND. (HR .EQ. 24)) GO TO 3 $Ach function IF (IMTH .EQ. IMO) GO TO 5 $Ach function 3 AVG=TOTAL/(DS*24) $Ach function INF=AVG*60/(FLOORAREA*8) ``` ``` $Ach function PRINT 80, IMTH, AVG, INF $Ach function TOTAL=0 $Ach function DL=DL+DS $Ach function 5 IMTH=IMO $Ach function DS=IDOY-DL $Ach function TOTAL=TOTAL+INFIL1 80 FORMAT('$$INF 1' ,F4.0,F10.2,F10.5) $Ach function $Ach function 8 CONTINUE SAch function END $Ach function END-FUNCTION $CAch function $CAch function FUNCTION NAME=CRAWLINFILT $CAch function LEVEL-BUILDING $CACh function ASSIGN IDOY=IDOY IMO=IMO HR=IHR FLOORAREA=FLOORAREA ... $CAch function ASSIGN IPRDFL=IPRDFL FNTYPE=FNTYPE INFIL3=CFMINF ... $CAch function CALCULATE $CAch function IF (FNTYPE .NE. 2) GO TO 8 IF (IPRDFL .LE. 0) GO TO 2 $CAch function $CAch function IMTH=1 $CAch function DL=0 $CAch function TOTAL=0 $CAch function 2 IF ((IDOY .EQ. 365) .AND. (HR .EQ. 24)) GO TO 3 IF (IMTH .EQ. IMO) GO TO 5 3 AVG=TOTAL/(DS*24) $CAch function $CAch function $CAch function INF=AVG*60/(FLOORAREA*3) $CAch function PRINT 80, IMTH, AVG, INF $CAch function TOTAL=0 $CAch function $CAch function DL=DL+DS 5 IMTH=IMO $CAch function DS=IDOY-DL $CAch function TOTAL=TOTAL+INFIL3 80 FORMAT('$$INF 3',F4.0,F10.2,F10.5) $CAch function $CAch function 8 CONTINUE $CAch function END $CAch function END-FUNCTION COMPUTE LOADS $Loads report$ SAVE-FILES .. *(*)*(*)*(*)*(*)*(*) (*)*(*)*(*)*(*)*(*)* *(*)*(*)*(*)*(*)*(*) File name:SYS.PROD (*)*(*)*(*)*(*)*(*)* *(*)*(*)*(*)*(*)*(*) Date: Nov 3 1986 (*)*(*)*(*)*(*)*(*)* *(*)*(*)*(*)*(*)*(*) *)*(*)*(*)*(*)*(*)* INPUT SYSTEMS TITLE LINE-1 *PROTOTYPE FOUNDATION OPTION AND CODE * LINE-2 *LOCATION WEATHER TAPE WALL EQUIPMENT * *Dummy *Dummy *Dummy LINE-3 * *Dummy LINE-4 * *Dummy LINE-5 * DIAGNOSTIC CAUTIONS ECHO ... SYSTEMS-REPORT SUMMARY=(SS-A, SS-B, SS-C, SS-F, SS-H, SS-I) .. ``` #### PARAMETER | \$ | EK | | |---|---|--| | COOLSET=78
VTYPE=-1 | SETBACK=70
SETUP=78 | \$ no night setback
\$ no day setup
\$ enthalpic venting | | \$Furn \$
\$Furn \$
\$HP \$
CBF=.098 | FHIR=1.4286
MAXTEMP=120
MAXTEMP=100
CEIR=.3703 | \$ 77% efficiency + 10% duct losses | | * | CEIR5705 | \$ 2.7 COP air conditioner | | | HCAPF=-50000.
ACCFM=1050 | HPHCAP=-36000 HPBKUP=-17000
CTCAP=36000 CSCAP=28800. | | | HCAPF=-100000.
ACCFM=2100 | . HPHCAP=-48000 HPBKUP=-17000
CTCAP=48000 CSCAP=38400. | | \$Split Level \$ 1
\$Split Level \$ 1
* | HCAPF=-100000.
ACCFM=2100 | . HPHCAP=-36000 HPBKUP=-17000
CTCAP=36000 CSCAP=28800. | | \$Townhouse \$ 7 | HCAPF=-50000.
ACCFM=1050 | CTCAP=33000 CSCAP=26400. | | \$Apartment \$ 1
\$Apartment \$ 2 | HCAPF=-50000.
ACCFM=1050 | HPHCAP=-33000 HPBKUP=-17000
CTCAP=33000 CSCAP=26400. | | \$ | | | | \$ Systems S | | | | HTSCH SCHEDULI | E \$ heat temp | perature schedule, 7 hour night setback (ALL) (1,6) (SETBACK) (7,23) (HEATSET) | | CTSCH SCHEDULI | E \$ cool temp
THRU DEC 31 | cerature schedule, 7 hour day setup
(ALL) (1,9) (COOLSET)
(10,16) (SETUP)
(17,24) (COOLSET) | | VTSCH SCHEDULI | THRU MAY 14 | dule based on previous 4 days load
(ALL) (1,24) (-4)
(ALL) (1,24) (-4)
(ALL) (1,24) (-4) | | VOPSCH SCHEDULE | E \$Vent opera | ition schedule | | WINDOPER SCHEDULE | E \$No window | (ALL) (1,24) (VTYPE) operation between 11 p.m. and 6 a.m. (ALL) (1,6) (0.0) (7,23) (1.0) | | ¢ | | (24) (0.0) | | \$ Zones | | | | \$ | | | | ZC1 | D
C
H | OL OESIGN-HEAT-T=70. OESIGN-COOL-T=78. OCOL-TEMP-SCH=CTSCH OEAT-TEMP-SCH=HTSCH OCHEMP-SCH=HTSCH OCHEMP-SCH=HTSCH OCHEMP-SCH=HTSCH OCHEMP-SCH=HTSCH | | THEROOM | | ONE-CONTROL=ZC1 | ``` ZONE-TYPE=CONDITIONED ... $Apartment$ UPROOM ZONE ZONE-CONTROL=ZC1 $Apartment$ ZONE-TYPE=CONDITIONED $Bsmt $ BASEMENT ZONE ZONE-TYPE=UNCONDITIONED $Crawl $ CRAWLSPACE ZONE ZONE-TYPE-UNCONDITIONED Systems SYSCONTRL SYSTEM-CONTROL MAX-SUPPLY-T=MAXTEMP MIN-SUPPLY-T=50 SYSAIR SYSTEM-AIR SUPPLY-CFM=ACCFM NATURAL-VENT-SCH=VOPSCH VENT-TEMP-SCH=VTSCH OPEN-VENT-SCH=WINDOPER HOR-VENT-FRAC=0.0 $ assume 1/4 of total window area opened for venting, $ and discharge coefficient of 0.6 FRAC-VENT-AREA=0.018 VENT-METHOD=S-G MAX-VENT-RATE=20 SYSEOP SYSTEM-EQUIPMENT COOLING-CAPACITY=CTCAP COOL-SH-CAP=CSCAP COIL-BF=CBF COMPRESSOR-TYPE=SINGLE-SPEED $HP Heatpump specifications $HP HEATING-CAPACITY=HPHCAP $HP HEATING-EIR=.37 $HP HP-SUPP-HT-CAP=HPBKUP $HP MAX-HP-SUPP-T=40. Furnace specifications $Furn $Furn $ HEATING-CAPACITY=HCAPF $ $Furn FURNACE-AUX-0. $Furn FURNACE-HIR=FHIR $ duct losses in FHIR already RESIDEN SYSTEM SYSTEM-TYPE=RESYS $Slab $ ZONE-NAMES=(THEROOM) ZONE-NAMES=(THEROOM, BASEMENT) ZONE-NAMES=(THEROOM, CRAWLSPACE) $Bsmt $Crawl $ SYSTEM-CONTROL-SYSCONTRL SYSTEM-AIR-SYSAIR SYSTEM-EQUIPMENT=SYSEQP $Furn HEAT-SOURCE=GAS-FURNACE HEAT-SOURCE=HEAT-PUMP UPRESIDEN SYSTEM SYSTEM-TYPE=RESYS $Apartment$ $Apartment$ ZONE-NAMES=(UPROOM) $Apartment$ SYSTEM-CONTROL-SYSCONTRL $Apartment$ SYSTEM-AIR-SYSAIR $Apartment$ SYSTEM-EQUIPMENT=SYSEQP $AptFurn $ HEAT-SOURCE=GAS-FURNACE $AptHP HEAT-SOURCE=HEAT-PUMP ``` \$Apartment\$ END .. COMPUTE SYSTEMS .. STOP .. #### APPENDIX B. SAMPLE PROCESSED DOE-2.1C INPUT FILE | Appendix B contains a sample processed file for a medium insulated house with a slab foundation in Albuquerque NM. | |--| | | | | | | ## LDL PROCESSOR INPUT DATA 08-Sep-87 18:20:07 LDL RUN 1 ``` TITLE LINE-1 *One Story Slab F02 (19-11-FM1-M-2/1.) * LINE-2 *Albuquerque NM WYEC Siding Furn/AC * 14 * 15 * 16 * LINE-3 17 * LINE-4 18 * LINE-5 19 20 * 21 * PARAMETER 22 * 23 24 * IWALLAREA = area of interior walls 25 26 * $One Story $ FLOORAREA=1540 PERIM=166 IWALLAREA=1088 27 * $One Story $ BSMTAREA=1540 $One Story $ ROOFZ=8.0 ROOFHT=14.757 ROOFWD=27.5 $ WALLWD=41.5 WALLHT=8.0 WINDOWWD=11.55 28 * $One Story 29 * $0ne Story $ WALLX=61.5 SHADEX=81.5 $0ne Story $ INTLOAD=56857 LATLOAD=.2138 $Albuquerque $ FSLABL=fslabldy BSLABL=bslabldy CGNDL=cgndldy 30 * 31 * 32 * $Albuquerque $ R5BWALL=r5bwlldy R10BWALL=r10bwldy R0BWALL=r0bwlldy $Medium Infiltration $ INFILT = .0005 $2-pane Windows $ UWINDOW = .535 33 * 34 * $2-pane Windows $UWINDOW = .535 $1. Shading Coefficient $GLSCOEF=1.0 $R19 Ceiling $R00FL = r19roof $R11 Reg siding wall $WALLL = r11rwall $Albuqu One Slab FM1 $FDNUEFF = .0217 $ GndU=.0000 GndT=62 35 * 36 * 37 * 38 * 39 * 40 * $ --- end of parameters ----- ----- 41 * 42 * RUN-PERIOD JAN 1 1986 THRU DEC 31 1986 CAUTIONS, WIDE, ECHO, SINGLE-SPACED ... LAT=35.05 LON=106.62 T-Z=7 ALT=5310 WS-HEIGHT-LIST= 43 * DIAGNOSTIC 44 BUILDING-LOCATION 45 46 * (48,23,48,23,48,23,23,23,48,23,23,23) AZIMUTH=0 SHIELDING-COEF=0.19 47 * 48 + TERRAIN-PAR1=.85 TERRAIN-PAR2=.20 49 WS-TERRAIN-PAR1=.85 WS-TERRAIN-PAR2=.20 50 * FUNCTION =(*SHADING*,*NONE*) 51 * 52 * ABORT WARNINGS 53 * LOADS-REPORT SUMMARY=(LS-E) .. 54 * --------- 55 * $---- Loads Schedules ----- 56 * DAYINTSCH DAY-SCHEDULE 57 * $CEC internal loads profile TAYINISCH DAY-SCHEDULE $CEC internal loads prof (1) (.024) (2) (.022) (3,5) (.021) (6) (.026) (7) (.038) (8) (.059) (9) (.056) (10) (.060) (11) (.059) (12) (.046) (13) (.045) (14) (.030) (15) (.028) (16) (.031) (17) (.057) (18,19) (.064) (20) (.052) (21) (.050) (22) (.055) (23) (.044) (24) (.027) . INTLDSCH SCHEDULE THRU DEC 31 (ALL) DAYINTSCH ... 58 * 59 * 60 * 61 * 62 * 63 * ``` ``` 66 * $ The following shading schedule is modified by function SHADING 67 * $ to give .63 during the cooling season defined as periods with 68 * 69 * $ more than 5 cooling degree days for the four previous days. 70 * SHADCO SCHEDULE THRU DEC 31 (ALL) (1,24) (0.80) ... 71 * $----- 72 * 73 * $---- Constructions ----- 74 * $----- 75 * WINDOWGT GLASS-TYPE $ Windows 76 * SHADING-COEF=GLSCOEF 77 * GLASS-CONDUCTANCE=UWINDOW ... 78 * WALLCON CONSTRUCTION $ Wall section 79 * LAYERS=WALLL * 08 ROOFCON CONSTRUCTION $ Roof section, with joist 81 * LAYERS=ROOFL . 82 * IWALLCON CONSTRUCTION $ Interior walls 83 * LAYERS=iwall1 84 * DOORCON CONSTRUCTION $ Solid door 85 * U-VALUE= . 7181 86 * FSLABCON CONSTRUCTION $ Floor slab in contact with soil $$lab concrete floor$ LAYERS=FSLABL ... 87 * 88 * 89 * $____SURROUNDN BUILDING-SHADE $ Effect of neighboring houses north 90 * 91 * 92 * HEIGHT=10 WIDTH=SHADEX X=0 Y=SHADEX AZIMUTH=180 93 * 94 * TRANSMITTANCE=0.50 TILT=90 . SURROUNDS BUILDING-SHADE $ Effe 95 * $ Effect of neighboring houses south 96 * 97 * X=SHADEX Y=0 AZIMUTH=0 ... HADE $ Effect of neighboring houses east 98 * SURROUNDE BUILDING-SHADE 99 * LIKE SURROUNDN 100 * X=SHADEX Y=SHADEX AZIMUTH=270 ... * 101 * SURROUNDW BUILDING-SHADE $ Effect of neighboring houses west 102 * LIKE SURROUNDN * 103 * X=0 Y=0 AZIMUTH=90 ... * 104 * * 105 * $---- Space ----- * 106 * $ Sensible internal loads are assumed at 4692kWh/year plus * 107 * 108 * 0.9kWh/sqft for lighting. Latent loads assumed 1300kWh/year * 109 * * 110 * ROOMCOND SPACE-CONDITIONS * 111 * TEMPERATURE = (74) * 112 SOURCE-TYPE=PROCESS * 113 SOURCE-SCHEDULE=INTLDSCH 114 SOURCE-BTU/HR=INTLOAD 115 SOURCE-SENSIBLE=1 * 116 SOURCE-LATENT=LATLOAD 117 INF-METHOD=S-G * 118 FRAC-LEAK-AREA = INFILT 119 FLOOR-WEIGHT=0 * 120 FURNITURE-TYPE=LIGHT * 121 FURN-FRACTION=0.29 122 FURN-WEIGHT=3.30 * 123 * * 124 * THEROOM SPACE * 125 * SPACE-CONDITIONS=ROOMCOND ``` ``` * 126 * AREA=FLOORAREA 127 VOLUME=FLOORAREA TIMES 8. .. * 128 * INTWALL INTERIOR-WALL * 129 * INT-WALL-TYPE=INTERNAL * 130 * AREA=IWALLAREA
CONSTRUCTION=IWALLCON .. 131 * NWALL EXTERIOR-WALL 132 * WIDTH=WALLWD CONSTRUCTION=WALLCON * 133 * X=WALLX Y=WALLX HEIGHT=WALLHT HEIGHT=6.5 WIDTH=.75 CONSTRUCTION=DOORCON X=3.0 .. GLASS-TYPE=WINDOWGT X=5.0 Y=3 HEIGHT=4.0 WIDTH=WINDOWWD SHADING-SCHEDULE=SHADCO NDOOR 134 * DOOR * 135 * NWIND1 WINDOW 136 137 * $0ne St$ OH-A=5.0 OH-B=1.0 OH-W=WALLWD OH-D=2.0 138 * 139 * SWALL EXTERIOR-WALL LIKE NWALL X=20 Y=20 AZIMUTH=180 ... * 140 * SDOOR DOOR LIKE NDOOR * 141 * SWIND1 WINDOW LIKE NWIND1 * 142 * EWALL EXTERIOR-WALL LIKE NWALL X=WALLX Y=20 AZIMUTH=90 ... 143 * EDOOR LIKE NDOOR LIKE NWIND1 DOOR * 144 EWIND1 WINDOW * 145 * WWALL EXTERIOR-WALL LIKE NWALL X=20 Y=WALLX AZIMUTH=270 ... 146 WDOOR DOOR LIKE NDOOR LIKE NWIND1 * 147 WWIND1 WINDOW $ FOUNDATION UNDERGROUND-FLOOR $ Slab floor HEIGHT=10 WIDTH=BSMTAREA TIMES .1 * 148 * $Slab 149 $Slab * 150 * $Slab TILT=180 CONSTRUCTION=FSLABCON 151 * $Slab U-EFFECTIVE=FDNUEFF 152 * $Slab FUNCTION = (*NONE*, *FNDQ*) $ * 153 * NROOF ROOF X=WALLX Y=WALLX Z=ROOFZ HEIGHT=ROOFHT WIDTH=ROOFWD CONSTRUCTION=ROOFCON TILT=18.435 154 * 155 SROOF ROOF LIKE NROOF AZIMUTH=180 X=20 Y=20 LIKE NROOF AZIMUTH=90 X=WALLX Y=20 * 156 EROOF ROOF 157 WROOF ROOF LIKE NROOF AZIMUTH=270 X=20 Y=WALLX * 158 * END .. -CAUTION--- ALL DIAGNOSTICS FOR THE WEIGHTING-FACTOR CALCULATION SECTION ARE GIVEN IN ENGLISH UNITS * 159 * FUNCTION NAME=SHADING * 160 * LEVEL=BUILDING Y=SCHEDULE-NAME (SHADCO) 161 * ASSIGN * 162 * ASSIGN IHR=IHR IDAY=IDAY IMO=IMO DBT=DBT 163 * ASSIGN IPRDFL=IPRDFL ISUNUP=ISUNUP ... * 164 * CALCULATE * 165 * IF (IPRDFL .LE. 0) GO TO 2 * 166 SC=Y 167 GO TO 70 168 * 2 IF (IHR .NE. 1) GO TO 5 169 * CDH=0 * 170 * HDH=0 * 171 * IDAYH=0 172 5 CONTINUE 173 * IF (ISUNUP .EQ. 0) GO TO 25 174 * DELTA=DBT-65.0 * 175 * IF (DELTA .GT. 0.00) GO TO 10 HDH=HDH+ABS (DELTA) * 176 * 177 GO TO 20 * 178 * 10 CDH=CDH+DELTA * 179 * 20 CONTINUE * 180 * IDAYH=IDAYH+1 25 IF (IHR .NE. 24) GO TO 70 CDDD=CDH/IDAYH * 181 * * 182 * ``` ``` * 183 * HDDD=HDH/IDAYH IF (CDDD .LT. 5.00) GO TO 29 IF (SC .NE. 0.80) GO TO 27 184 * * 185 * * 186 * ICOUNT=ICOUNT+1 * 187 * IF (ICOUNT .LE. 4) GO TO 40 * 188 * 27 IHCOUNT=0 SC=0.60 * 189 GO TO 70 * 190 * 191 * 29 IF (SC .NE. 0.60) GO TO 30 192 * IHCOUNT=IHCOUNT+1 193 * IF (IHCOUNT .GE. 4) GO TO 30 194 SC=0.60 GO TO 70 195 196 30 ICOUNT=0.0 197 40 SC=0.80 198 * 70 CONTINUE * 199 * Y=SC PRINT 80, Y, IMO, IDAY, IHR, CDDD, CDH, ICOUNT, IHCOUNT 80 FORMAT('SHADING : ADD=', 8F10.2) * 200 * 201 * * 202 * ----- SYMBOL TABLE----- CDDD **LOCAL * CDH **LOCAL* DBT (GLOBAL) HDH DELTA **LOCAL* ICOUNT **LOCAL* **LOCAL* IDAYH **LOCAL* IPRDFL IHCOUNT **LOCAL* (GLOBAL) ISUNUP (GLOBAL) SC **LOCAL * (SCH-NM) * 203 * END-FUNCTION 204 * FUNCTION NAME = FNDQ 205 * * 206 * LEVEL = UNDERGROUND-WALL 207 DOY=IDOY UGFQ=QUGF UGWQ=QUGW ... ASSIGN QTABL = TABLE (0, -2848.0) (1, -2890.9) (2, -2923.0) (3, -2940.5) (4, -2951.1) (5, -2965.2) (6, -2969.1) (7, -2989.7) (8, -3056.8) (9, -3079.3) (10, -3078.6) (11, -3047.5) (12, -2992.4) (13, -2924.8) (14, -2888.9) (15, -2965.7) (16, -3055.0) (17, -3086.0) (18, -3095.1) (19, -3080.7) (20, -3044.5) (21, -3005.8) (22, -3026.0) (23, -3023.6) (24, -3005.5) (25, -2990.5) (26, -2971.8) (27, -2949.1) (28, -2909.0) (29, -2891.7) (35, -2678.6) (36, -2622.4) (37, -2558.6) (38, -2498.7) (39, -2430.0) (40, -2388.9) (41, -2327.6) (42, -2296.8) (43, -2282.9) (44, -2244.7) (50, -2005.4) (51, -1959.2) (52, -1919.2) (53, -1877.8) (54, -1848.3) (55, -1798.8) (56, -1743.0) (57, -1689.2) (58, -1637.7) (59, -1573.3) (60, -1493.8) (61, -1418.4) (62, -1366.4) (63, -1360.2) (64, -1367.1) (70, -1172.8) (71, -1137.0) (72, -1123.4) (73, -1101.7) (74, -1077.6) (80, -1065.8) (81, -1071.6) (82, -1094.9) (86, -1099.1) (87, -1094.5) (89, -1156.5) (90, -1193.6) (91, -1209.2) (92, -1240.8) (93, -1269.8) (94, -1309.8) (95, -1343.8) (96, -1375.3) (97, -1411.7) (98, -1466.7) (99, -1575.5) (100, -1571.5) (101, -1622.6) (102, -1671.8) (103, -1710.1) (104, -1757.4) (105, -1791.8) (106, -1822.5) (107, -1874.3) (108, -1934.4) (109, -2034.2) (110, -2134.7) (111, -2260.7) (112, -2284.4) (118, -2577.7) (119, -2610.2) (120, -2659.0) (121, -2751.0) (122, -2814.3) ... ASSIGN 208 * ASSIGN QTABL = TABLE * 209 210 211 212 213 214 215 216 217 218 * 219 220 221 * 222 223 224 225 226 227 228 229 230 * 231 * 232 * 233 * ``` ``` * 234 * CALCULATE * 235 * WEEK = DOY / 3.0 UGWQ = 0.0 * 236 * UGFQ = PWL(QTABL, WEEK) PRINT 10, DOY, WEEK, UGWQ, UGFQ 10 FORMAT('FNDQ', 4F10.2) FND_FUNCTION * 237 * * 238 * C * 239 * * 240 * END-FUNCTION ----- SYMBOL TABLE---- DOY (GLOBAL) QTABL (TABLE) UGFQ (GLOBAL) UGWQ (GLOBAL) * 241 * COMPUTE LOADS .. $. * 242 * * 243 * * 244 * * 245 * * 246 * * 247 * * 248 * * 249 * * 250 * INPUT SYSTEMS .. ``` # SDL PROCESSOR INPUT DATA 08-Sep-87 18:20:07 SDL RUN 1 ``` * 251 * TITLE LINE-1 *One Story Slab FO2 (19-11-FM1-M-2/1.) * 252 * LINE-2 *Albuquerque NM WYEC Siding Furn/AC * 253 * * 254 * LINE-4 * 255 * LINE-5 * * 256 * DIAGNOSTIC CAUTIONS ECHO ... 257 * 258 * SYSTEMS-REPORT 259 * SUMMARY=(SS-A,SS-B,SS-C,SS-F,SS-H,SS-I) ... * 260 * * 261 * PARAMETER * 262 * * 263 * HEATSET=70 SETBACK=70 $ no night setback * 264 * COOLSET=78 SETUP=78 $ no day setup * 265 * VTYPE=-1 $ enthalpic venting * 266 * $Furn $ FHIR=1.4286 $ 77% efficiency + 10% duct losses * 267 * $Furn $ MAXTEMP=120 * 268 * CBF=.098 CEIR=.3703 $ 2.7 COP air conditioner * 269 * $0ne Story $ HCAPF=-50000. HPHCAP=-36000 HPBKUP=-17000 * 270 * $0ne Story $ ACCFM=1050 CTCAP=36000 CSCAP=28800. * 271 * $---- * 272 * $---- Systems Schedules ---- * 273 * * 274 * * 275 * SCHEDULE $ heat temperature schedule, 7 hour night setback HTSCH * 276 * THRU DEC 31 (ALL) (1,6) (SETBACK) * 277 * (7,23) (HEATSET) * 278 * (24) (SETBACK) * 279 * CTSCH SCHEDULE $ cool temperature schedule, 7 hour day setup * 280 * THRU DEC 31 (ALL) (1,9) (CÓOLSET) (10,16) (SETUP) * 281 * * 282 * (17,24) (COOLSET) * 283 * SCHEDULE $Vent schedule based on previous 4 days load VTSCH * 284 * THRU MAY '14 (ALL) (1,24) (-4) THRU SEP 30 (ALL) (1,24) (-4) * 285 * * 286 * THRU DEC 31 (ALL) (1,24) (-4) ... * 287 * SCHEDULE $Vent operation schedule VOPSCH * 288 * THRU DEC 31 (ALL) (1,24) (VTYPE) ... WINDOPER SCHEDULE $No window operation between 11 p.m. and 6 a.m. * 289 * * 290 * THRU DEC 31 (ALL) (1,6) (0.0) (7,23) (1.0) * 291 * * 292 * * 293 * $---- Zones ----- 294 * 295 * 2----2 * 296 * ZC1 ZONE-CONTROL * 297 * DESIGN-HEAT-T=70. * 298 * DESIGN-COOL-T=78. * 299 * COOL-TEMP-SCH=CTSCH * 300 * HEAT-TEMP-SCH=HTSCH * 301 * THERMOSTAT-TYPE=TWO-POSITION ... * 302 * THEROOM ZONE ZONE-CONTROL=ZC1 ``` ``` * 303 * ZONE-TYPE=CONDITIONED ... 304 * 305 * $---- Systems * 306 SYSCONTRL SYSTEM-CONTROL * 307 * * 308 * MAX-SUPPLY-T=MAXTEMP * 309 * MIN-SUPPLY-T=50 * 310 * * 311 * SYSAIR SYSTEM-AIR * 312 * SUPPLY-CFM=ACCFM * 313 * NATURAL-VENT-SCH=VOPSCH * 314 * VENT-TEMP-SCH=VTSCH * 315 * OPEN-VENT-SCH=WINDOPER * 316 * HOR-VENT-FRAC=0.0 $ assume 1/4 of total window area opened for venting, * 317 * * 318 * $ and discharge coefficient of 0.6 * 319 * FRAC-VENT-AREA=0.018 * 320 * VENT-METHOD=S-G * 321 * MAX-VENT-RATE=20 * 322 * 323 * SYSEQP SYSTEM-EQUIPMENT 324 * COOLING-CAPACITY=CTCAP 325 * COOL-SH-CAP=CSCAP 326 * COIL-BF=CBF * 327 * COMPRESSOR-TYPE=SINGLE-SPEED * 328 * $Furn Furnace specifications * 329 * SFurn S HEATING-CAPACITY=HCAPF * 330 * SFurn S FURNACE-AUX=O. * 331 * Sfurn S FURNACE-HIR=FHIR $ duct losses in FHIR already * 332 * RESIDEN SYSTEM SYSTEM-TYPE=RESYS * 333 * * 334 * $$ lab $ ZONE-NAMES=(THEROOM) * 335 * SYSTEM-CONTROL=SYSCONTRL * 336 * SYSTEM-AIR=SYSAIR * 337 * SYSTEM-EQUIPMENT=SYSEQP * 338 * $Furn $ HEAT-SOURCE=GAS-FURNACE * 339 * * 340 * END .. * 341 * COMPUTE SYSTEMS .. * 342 * STOP ``` ``` * 234 * CALCULATE * 235 * WEEK = DOY / 3.0 236 * UGWQ = 0.0 237 * UGFQ = PWL(QTABL, WEEK) PRINT 10, DOY, WEEK, UGWQ, UGFQ * 238 * C 10 FORMAT ('FNDQ', 4F10.2) * 239 * END-FUNCTION 240 * ----- S Y M B O L TABLE ---- DOY (GLOBAL) QTABL (TABLE) UGFQ (GLOBAL) UGWQ (GLOBAL) 241 * COMPUTE LOADS ... 242 * 243 * 244 * $ *(*)*(*)*(*)*(*) (*)*(*)*(*)*(*)*(*)* 245 * $ *(*)*(*)*(*)*(*)*(*) File name:SYS.PROD (*)*(*)*(*)*(*)*(*)* * 246 * * 247 * $ *(*)*(*)*(*)*(*) (*)*(*)*(*)*(*)*(*)* * 248 * * 249 * * 250 * INPUT SYSTEMS .. ``` ### SDL PROCESSOR INPUT DATA 08-Sep-87 18:20:07 SDL RUN 1 ``` TITLE LINE-1 *One Story Slab FO2 (19-11-FM1-M-2/1.) * * 251 * 252 * LINE-2 *Albuquerque NM WYEC Siding Furn/AC 253 * LINE-3 254 * LINE-4 255 * LINE-5 * 256 * DIAGNOSTIC CAUTIONS ECHO ... 257 * 258 * SYSTEMS-REPORT * 259 * SUMMARY=(SS-A,SS-B,SS-C,SS-F,SS-H,SS-I) ... * 260 * * 261 * PARAMETER * 262 * * 263 * HEATSET=70 SETBACK=70 $ no night setback * 264 * COOLSET=78 SETUP=78 $ no day setup * 265 * VTYPE=-1 $ enthalpic venting * 266 * $Furn $ FHIR=1.4286 $ 77% efficiency + 10% duct losses * 267 * $Furn $ MAXTEMP=120 * 268 * CBF=.098 CEIR=.3703 $ 2.7 COP air conditioner * 269 * $ HCAPF=-50000. HPHCAP=-36000 HPBKUP=-17000 $One Story * 270 * $One Story $ ACCFM=1050 CTCAP=36000 CSCAP=28800. * 271 * $----- * 272 * $---- Systems Schedules ----- * 273 * $----- * 274 * SCHEDULE $ heat temperature schedule, 7 hour night setback * 275 * HTSCH * 276 * THRU DEC 31 (ALL) (1,6) (SÉTBACK) (7,23) (HEATSET) * 277 * * 278 * (24) (SETBACK) * 279 * CTSCH SCHEDULE $ cool temperature schedule, 7 hour day setup * 280 * THRU DEC 31 (ALL) (1,9) (COOLSET) * 281 * (10,16) (SETUP) * 282 * (17, 24) (COOLSET) ... * 283 * SCHEDULE $Vent schedule based on previous 4 days load VTSCH * 284 * THRU MAY '14 (ALL) (1,24) (-4) * 285 * THRU SEP 30 (ALL) (1,24) (-4) THRU DEC 31 (ALL) (1,24) (-4) ... * 286 * * 287 * VOPSCH SCHEDULE $Vent operation schedule * 288 * THRU DEC 31 (ALL) (1,24) (VTYPE) .. WINDOPER SCHEDULE $No window operation between 11 p.m. and 6 a.m. * 289 * * 290 * THRU DEC 31 (ALL) (1,6) (0.0) * 291 * (7,23) (1.0) * 292 * $-----(24) (0.0) * 293 * $---- Zones ----- * 294 * 295 * $----- 296 * ZC1 ZONE-CONTROL 297 * DESIGN-HEAT-T=70. 298 * DESIGN-COOL-T=78. * 299 * COOL-TEMP-SCH=CTSCH *
300 * HEAT-TEMP-SCH=HTSCH 301 * THERMOSTAT-TYPE=TWO-POSITION ... * 302 * THEROOM ZONE ZONE-CONTROL=ZC1 ```